Boosting interfacial charge transfer by constructing rare earth-doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells

被引:14
作者
Chen, X. [1 ]
Shi, Z. [1 ]
Pan, G. [2 ,3 ]
Zhu, J. [4 ]
Hu, J. [4 ]
Wu, Y. [5 ]
Tian, Y. [1 ]
Li, X. [1 ]
Xu, W. [5 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys, Minist Educ, Zhengzhou 450052, Peoples R China
[2] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
[3] Henan Univ, Inst Micro Nano Photon Mat & Applicat, Kaifeng 475004, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, State Ctr Int Cooperat Designer Low Carbon & Envi, 100 Kexue Ave, Zhengzhou 450001, Peoples R China
[5] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lanthanides doped; Substoichiometric tungsten oxide; Planar perovskite solar cells; Interface engineering; Long-term stability; PERFORMANCE;
D O I
10.1016/j.mtener.2021.100724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently,the highest power conversion efficiency (PCE) of perovskite solar cells (PSCs) is up to 25%. Interfacial engineering strategy is an efficient route for improving carrier extraction and transport in planar heterojunction PSCs. Herein, we use the rare earth (RE)-doped WOx nanorods/SnO2 hybrid films as the electron transport layer (ETL) to accurately modulate the interfacial charge dynamics for hysteresis-free, high-performance devices. The RE-WOx nanorods with SnO2 can improve the perovskite crystal quality and hinder electron-hole recombination by reducing the interface traps/defects between the ETL and perovskite. Meanwhile, owing to the excellent mobility and conductivity of RE-WOx nanorods and the well gradient band alignment, the improved electron extraction and transport at the interface of ETL and perovskite in PSCs are obtained compared with the SnO2 ETL. With these desirable properties, the optimized PSC device yields a high PCE of 21.42% with negligible hysteresis. Meanwhile, the stability of PSC devices could also be significantly boosted without any encapsulation. The introduction of RE-WOx nanorods as the interface modifier is a significant strategy to improve the interface property in the PSCs and opens up a novel and promising avenue for application in efficient and stable PSCs. (C) 2021 Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Low Hysteresis Perovskite Solar Cells Using an Electron-Beam Evaporated W3-x Thin Film as the Electron Transport Layer [J].
Ali, Fawad ;
Ngoc Duy Pham ;
Fan, Lijuan ;
Tiong, Vincent ;
Ostrikov, Ken ;
Bell, John M. ;
Wang, Hongxia ;
Tesfamichael, Tuquabo .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (08) :5456-5464
[2]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[3]   Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells [J].
Chen, Cong ;
Liu, Dali ;
Wu, Yanjie ;
Bi, Wenbo ;
Sun, Xueke ;
Chen, Xu ;
Liu, Wei ;
Xu, Lin ;
Song, Hongwei ;
Dai, Qilin .
NANO ENERGY, 2018, 53 :849-862
[4]   Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Zhao, Xing ;
Kim, Seul-Gi ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (39)
[5]   Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells [J].
Chen, Xu ;
Xu, Wen ;
Shi, Zhifeng ;
Pan, Gencai ;
Zhu, Jinyang ;
Hu, Junhua ;
Li, Xinjian ;
Shan, Chongxin ;
Song, Hongwei .
NANO ENERGY, 2021, 80
[6]   Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High-Performance Perovskite Solar Cells [J].
Chen, Xu ;
Xu, Wen ;
Ding, Nan ;
Ji, Yanan ;
Pan, Gencai ;
Zhu, Jinyang ;
Zhou, Donglei ;
Wu, Yanjie ;
Chen, Cong ;
Song, Hongwei .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
[7]   Thermally stable, planar hybrid perovskite solar cells with high efficiency [J].
Choi, Kyoungwon ;
Lee, Junwoo ;
Kim, Hong Il ;
Park, Cheol Woong ;
Kim, Guan-Woo ;
Choi, Hyuntae ;
Park, Sungjin ;
Park, Sang Ah ;
Park, Taiho .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3238-3247
[8]   Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability [J].
Gheno, Alexandre ;
Trang Thi Thu Pham ;
Di Bin, Catherine ;
Boucle, Johann ;
Ratier, Bernard ;
Vedraine, Sylvain .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 161 :347-354
[9]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
[10]   Polyelectrolyte-Doped SnO2 as a Tunable Electron Transport Layer for High-Efficiency and Stable Perovskite Solar Cells [J].
Huang, Xiangping ;
Du, Jianhui ;
Guo, Xing ;
Lin, Zhenhua ;
Ma, Jing ;
Su, Jie ;
Feng, Liping ;
Zhang, Chunfu ;
Zhang, Jincheng ;
Chang, Jingjing ;
Hao, Yue .
SOLAR RRL, 2020, 4 (01)