The cyclicity of the period annulus of the quadratic Hamiltonian triangle

被引:48
作者
Iliev, ID
机构
[1] Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia
关键词
D O I
10.1006/jdeq.1996.0097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies quadratic Hamiltonian centers surrounded by a separatrix contour having a form of a triangle. It is proved that in this situation the cyclicity of the period annulus under quadratic perturbations is equal to three. (C) 1996 Academic Press, Inc.
引用
收藏
页码:309 / 326
页数:18
相关论文
共 9 条
[1]  
Arnol'd V. I., 1988, SINGULARITIES DIFFER, VII
[2]  
Bautin N. N., 1954, AM MATH SOC TRANSL, P19
[3]  
Coppel W.A., 1993, DIFFER INTEGRAL EQU, V6, P1357
[4]  
DRACHMAN B, 1987, J REINE ANGEW MATH, V382, P165
[5]  
FRANCOISE JP, IN PRESS ERGOD THEOR
[6]  
GAVRILOV L, LECT NOTES MATH, V1455, P160
[7]  
ILIEV ID, 1994, HIGHER ORDER MELNIKO
[8]   QUADRATIC SYSTEMS WITH CENTER AND THEIR PERTURBATIONS [J].
ZOLADEK, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :223-273