Multifunctional Li(Ni0.5Co0.2Mn0.3) O2-Si batteries with self-actuation and self-sensing

被引:6
作者
Ma, Jun [1 ]
Gonzalez, Cody [1 ]
Huang, Qingquan [2 ]
Farese, Joseph [1 ]
Rahn, Christopher [1 ]
Frecker, Mary [1 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Multifunctional; Li-ion battery; Si; actuation; sensing; THERMOCHEMICAL EQUILIBRIUM; STRESS GENERATION; SILICON ANODES; LITHIUM; PERFORMANCE; FRACTURE; SOLIDS; BINDER; ROLES;
D O I
10.1177/1045389X19898768
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among anode materials for Li-ion batteries, Si is known for high theoretical capacity, low cost, large volume change, relatively fast capacity fade and significant stress-potential coupling. This article shows that a Li(Ni0.5Co0.2Mn0.3)O-2-Si battery can store energy, actuate with Si volume change and sense with stress-potential coupling. Experiments are conducted in an electrolyte-filled chamber with a glass window with Li(Ni0.5Co0.2Mn0.3)O-2 cathodes and Si composite anodes. The Si anodes are single-side coated on Cu current collector with Si nanoparticles, polyacrylic acid binder and conductive carbon black in a porous composite structure. During charging, the battery stores energy, Li inserts in the cantilevered Si anodes and the cantilevers bend laterally. Discharging the battery releases the stored energy and straightens the Si cantilevers. Imposing deformation on the Si cantilevers at a fixed state of charge causes bending stress in the composite coating and a change in the open circuit potential. Testing at 1 Hz confirms that the Si composite responds to dynamic stress variations and with almost no phase lag, indicating the bandwidth of the stress-potential coupling in Si composite anodes is at least 1 Hz. .
引用
收藏
页码:860 / 868
页数:9
相关论文
共 30 条
[1]   High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors [J].
Albrecht, A ;
Park, SS ;
Altintas, Y ;
Pritschow, G .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2005, 45 (09) :993-1008
[2]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[3]   Mechanical behavior of electrochemically lithiated silicon [J].
Berla, Lucas A. ;
Lee, Seok Woo ;
Cui, Yi ;
Nix, William D. .
JOURNAL OF POWER SOURCES, 2015, 273 :41-51
[4]   Advances in Dielectric Elastomers for Actuators and Artificial Muscles [J].
Brochu, Paul ;
Pei, Qibing .
MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (01) :10-36
[5]   Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries [J].
Chen, Jianchao ;
Liu, Jianyong ;
Qi, Yue ;
Sun, Tao ;
Li, Xiaodong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1502-A1509
[6]   A mathematical model of stress generation and fracture in lithium manganese oxide [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1019-A1030
[7]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[8]  
Dobrzynska J. A., 2012, J MICROMECH MICROENG, V23, P1
[9]   Ultra-wide bandwidth piezoelectric energy harvesting [J].
Hajati, Arman ;
Kim, Sang-Gook .
APPLIED PHYSICS LETTERS, 2011, 99 (08)
[10]   The selection of mechanical actuators based on performance indices [J].
Huber, JE ;
Fleck, NA ;
Ashby, MF .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1965) :2185-2205