Thickness-dependent magnetotransport: from multilayer graphene to few-layer graphene

被引:14
作者
Li, H. [1 ]
Zeng, Y. J. [1 ]
Hu, X. J. [1 ]
Zhang, H. H. [1 ,2 ]
Ruan, S. C. [1 ]
Van Bael, M. J. [2 ]
Van Haesendonck, C. [2 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Shenzhen Key Lab Laser Engn, Shenzhen 518060, Peoples R China
[2] Katholieke Univ Leuven, Solid State Phys & Magnetism Lab, Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Graphene; Magnetoresistance; Mobility; Thickness; LARGE MAGNETORESISTANCE; NONSATURATING MAGNETORESISTANCE; ULTRAHIGH MOBILITY; FIELD;
D O I
10.1016/j.carbon.2017.08.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a comparative study of magetoresistance (MR) behaviors in few-layer graphene (FLG) and multilayer graphene (MLG) with various thicknesses. A maximum MR as large as 9500% is observed in a similar to 23 nm sample @ 2.5 K, with a non-saturating linear characteristic up to 7 T. MR decreases with increasing temperature and is proportional to the average mobility <mu> in similar to 23 nm and similar to 12 nm thick samples. In a thinner sample with thickness of similar to 1.6 nm, the maximum MR value is only 68% @ 7 T @ 280 K, which is two orders of magnitude smaller than those in the thicker samples. We attribute the MR mechanism of the FLG to mobility fluctuations Delta mu. Both the above situations follow the classical Parish and Littlewood model. Through comparison we unveil that both changes in the band structure resulting from a different sample thickness and the disorder induced by sample preparation and graphene/substrate interface are responsible for the MR behavior in the thickness variation. Our results indicate that MR tuning can be realized by precise thickness control in multilayer graphene. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 51 条
[1]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[2]   Quantum linear magnetoresistance [J].
Abrikosov, AA .
EUROPHYSICS LETTERS, 2000, 49 (06) :789-793
[3]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[4]  
[Anonymous], 2016, PHYS REV B, DOI DOI 10.1103/PHYSREVB.94.045402
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Superconductivity in the topological semimetal YPtBi [J].
Butch, N. P. ;
Syers, P. ;
Kirshenbaum, K. ;
Hope, A. P. ;
Paglione, J. .
PHYSICAL REVIEW B, 2011, 84 (22)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Layer-by-layer assembly of vertically conducting graphene devices [J].
Chen, Jing-Jing ;
Meng, Jie ;
Zhou, Yang-Bo ;
Wu, Han-Chun ;
Bie, Ya-Qing ;
Liao, Zhi-Min ;
Yu, Da-Peng .
NATURE COMMUNICATIONS, 2013, 4
[9]   Quantum Linear Magnetoresistance in Multi layer Epitaxial Graphene [J].
Friedman, Adam L. ;
Tedesco, Joseph L. ;
Campbell, Paul M. ;
Culbertson, James C. ;
Aifer, Edward ;
Perkins, F. Keith ;
Myers-Ward, Rachael L. ;
Hite, Jennifer K. ;
Eddy, Charles R., Jr. ;
Jernigan, Glenn G. ;
Gaskill, D. Kurt .
NANO LETTERS, 2010, 10 (10) :3962-3965
[10]   Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets [J].
Gao, B. F. ;
Gehring, P. ;
Burghard, M. ;
Kern, K. .
APPLIED PHYSICS LETTERS, 2012, 100 (21)