On the stability of delayed feedback controllers

被引:23
作者
Morgül, Ö [1 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06533 Bilkent, Ankara, Turkey
关键词
chaotic systems; chaos control; delayed feedback; Pyragas controller;
D O I
10.1016/S0375-9601(03)00866-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the stability of delayed feedback control (DFC) scheme for one-dimensional discrete time systems. We first construct a map whose fixed points correspond to the periodic orbits of the uncontrolled system. Then the stability of the DFC is analyzed as the stability of the corresponding equilibrium point of the constructed map. For each periodic orbit, we construct a characteristic polynomial whose Schur stability corresponds to the stability of DFC. By using Schur-Cohn criterion, we can find bounds on the gain of DFC to ensure stability. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 1999, CHAOS ORDER METHODOL
[2]   Giant improvement of time-delayed feedback control by spatio-temporal filtering -: art. no. 074101 [J].
Baba, N ;
Amann, A ;
Schöll, E ;
Just, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (07)
[3]   CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW E, 1994, 49 (02) :R971-R974
[4]   Linear time-delay feedback control of a pathological rhythm in a cardiac conduction model [J].
Brandt, ME ;
Shih, HT ;
Chen, GR .
PHYSICAL REVIEW E, 1997, 56 (02) :R1334-R1337
[5]  
Elaydi S., 1996, An Introduction to Difference Equations
[6]   Controlling friction [J].
Elmer, FJ .
PHYSICAL REVIEW E, 1998, 57 (05) :R4903-R4906
[7]   STABILIZING UNSTABLE PERIODIC-ORBITS IN A FAST DIODE RESONATOR USING CONTINUOUS TIME-DELAY AUTOSYNCHRONIZATION [J].
GAUTHIER, DJ ;
SUKOW, DW ;
CONCANNON, HM ;
SOCOLAR, JES .
PHYSICAL REVIEW E, 1994, 50 (03) :2343-2346
[8]   DYNAMICS AND RELAXATION PROPERTIES OF COMPLEX-SYSTEMS WITH MEMORY [J].
GIONA, M .
NONLINEARITY, 1991, 4 (03) :911-925
[9]   Dynamic control of cardiac alternans [J].
Hall, K ;
Christini, DJ ;
Tremblay, M ;
Collins, JJ ;
Glass, L ;
Billette, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4518-4521
[10]   Stabilization of unstable periodic orbits of chaotic discrete-time systems using prediction-based feedback control [J].
Hino, T ;
Yamamoto, S ;
Ushio, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (02) :439-446