共 88 条
Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum
被引:22
作者:
Barkla, Bronwyn J.
[1
]
Garibay-Hernandez, Adriana
[2
,3
]
Melzer, Michael
[3
]
Rupasinghe, Thusitha W. T.
[4
,5
]
Roessner, Ute
[4
,5
]
机构:
[1] Southern Cross Univ, Southern Cross Plant Sci, POB 157, Lismore, NSW 2480, Australia
[2] UNAM, Inst Biotecnol, Cuernavaca, Morelos, Mexico
[3] Leibniz Inst Plant Genet & Crop Plant Res, Seeland, Germany
[4] Univ Melbourne, Sch Biosci, Parkville, Vic, Australia
[5] Univ Melbourne, Sch Biosci, Metabol Australia, Parkville, Vic, Australia
关键词:
cell membranes;
lipid droplets;
lipid metabolism;
lipid signalling;
membrane remodelling;
plant abiotic stress;
plastoglobules;
salt tolerance;
triacylglycerides;
trichomes;
SALT-STRESS;
OIL BODIES;
PHOSPHATIDIC-ACID;
FATTY-ACIDS;
TOLERANCE;
METABOLISM;
PROTEIN;
DROUGHT;
LEAVES;
TRIACYLGLYCEROL;
D O I:
10.1111/pce.13352
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.
引用
收藏
页码:2390 / 2403
页数:14
相关论文