Lump-stripe interaction solutions to the potential Yu-Toda-Sasa-Fukuyama equation

被引:24
作者
Fang, Tao [1 ]
Wang, Yun-Hu [1 ,2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Art & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota bilinear method; Interaction solution; Rogue wave; CALOGERO-BOGOYAVLENSKII-SCHIFF; SOLITON-SOLUTIONS; BURGERS-EQUATION; WAVE SOLUTIONS; KINK SOLUTIONS; JIMBO-MIWA; ROGUE WAVE; FISSION; FUSION;
D O I
10.1007/s13324-018-0255-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of Hirota bilinear method and symbolic computation, this paper studied two types of interaction solutions for the potential Yu-Toda-Sasa-Fukuyama equation. The first type of interaction between lump soliton and one stripe soliton generate the fusion and fission phenomenon, while the second type of interaction solution between lump soliton and twin stripe solitons generate the rogue wave. The corresponding dynamic plots of the above phenomena are graphically displayed respectively.
引用
收藏
页码:1481 / 1495
页数:15
相关论文
共 47 条
[1]   Interacting nonlinear wave envelopes and rogue wave formation in deep water [J].
Ablowitz, Mark J. ;
Horikis, Theodoros P. .
PHYSICS OF FLUIDS, 2015, 27 (01)
[2]  
Babanin A.V., 2014, INT J OCEAN CLIMATE, V5, P39, DOI [DOI 10.1260/1759-3131.5.2.39, 10.1260/1759-3131.5.2.39]
[3]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[4]  
Bluman G.W., 2013, Symmetries and differential equations, V81
[5]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[6]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[7]   On shallow water rogue wave formation in strongly inhomogeneous channels [J].
Didenkulova, Ira ;
Pelinovsky, Efim .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (19)
[8]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[9]   New Types of Rogue Wave in an Erbium-Doped Fibre System [J].
He, Jingsong ;
Xu, Shuwei ;
Porsezian, Kuppuswamy .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (03)