Painleve integrability and N-soliton solution for the variable-coefficient Zakharov-Kuznetsov equation from plasmas

被引:15
作者
Qu, Qi-Xing [1 ]
Tian, Bo [1 ,2 ,3 ]
Liu, Wen-Jun [1 ]
Li, Min [1 ]
Sun, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Key Lab Informat Photon & Opt Commun, Minist Educ, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-coefficient Zakharov-Kuznetsov equation; Hirota method; N-soliton solution; Symbolic computation; KADOMTSEV-PETVIASHVILI EQUATION; BACKLUND TRANSFORMATION; SYMBOLIC COMPUTATION; KDV EQUATION; MODEL; NEBULONS; FORM; PROPERTY; FIBERS;
D O I
10.1007/s11071-010-9713-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation of B-type (BKP) is hereby investigated. New soliton solutions and soliton-like similarity solutions are constructed for the (2+1)-dimensional BKP equation. The similarity solutions are not travelling wave solutions when the arbitrary functions involved are chosen appropriately. Painlev, test shows that there are two solution branches, one of which has the resonance -2. And four similarity reductions for the BKP equation are given out through nontrivial variable transformations. Moreover, abundant soliton behaviour modes of the solutions, such as soliton fusion and soliton reflection, are discussed in detail.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 27 条
[21]   N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation [J].
Yu, Xin ;
Gao, Yi-Tian ;
Sun, Zhi-Yuan ;
Liu, Ying .
PHYSICA SCRIPTA, 2010, 81 (04)
[22]   N-SOLITON-LIKE SOLUTIONS AND BACKLUND TRANSFORMATIONS FOR A NON-ISOSPECTRAL AND VARIABLE-COEFFICIENT MODIFIED KORTEWEG-DE VRIES EQUATION [J].
Feng, Qian ;
Gao, Yi-Tian ;
Meng, Xiang-Hua ;
Yu, Xin ;
Sun, Zhi-Yuan ;
Xu, Tao ;
Tian, Bo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (05) :723-733
[23]   Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation [J].
Li, Juan ;
Xu, Tao ;
Meng, Xiang-Hua ;
Zhang, Ya-Xing ;
Zhang, Hai-Qiang ;
Tian, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1443-1455
[24]   INTERACTIONS AND OSCILLATIONS OF THREE-SOLITON SOLUTION IN THE VARIABLE-COEFFICIENT KUNDU-ECKHAUS EQUATION FOR DISPERSION MANAGEMENT SYSTEMS [J].
Yu, Wei-Tian ;
Wazwaz, Abdul-Majid ;
Zhou, Qin ;
Liu, Wen-Jun .
ROMANIAN JOURNAL OF PHYSICS, 2019, 64 (3-4)
[25]   Painlevé Analysis, Soliton Collision and B?cklund Transformation for the (3+1)-Dimensional Variable-Coefficient Kadomtsev–Petviashvili Equation in Fluids or Plasmas [J].
解西阳 ;
田播 ;
江彦 ;
仲晖 ;
孙亚 ;
王云坡 .
CommunicationsinTheoreticalPhysics, 2014, 62 (07) :26-32
[26]   Integrability aspects with optical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers [J].
Lue, Xing ;
Li, Juan ;
Zhang, Hai-Qiang ;
Xu, Tao ;
Li, Li-Li ;
Tian, Bo .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[27]   Symbolic computation, Backlund transformation and analytic N-soliton-like solution for a nonlinear Schrodinger equation with nonuniformity term from certain space/laboratory plasmas [J].
Zhu, Hong-Wu ;
Tian, Bo ;
Meng, Xiang-Hua ;
Lue, Xing ;
Yao, Zhen-Zhi ;
Zhang, Cheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) :193-200