Painleve integrability and N-soliton solution for the variable-coefficient Zakharov-Kuznetsov equation from plasmas

被引:15
作者
Qu, Qi-Xing [1 ]
Tian, Bo [1 ,2 ,3 ]
Liu, Wen-Jun [1 ]
Li, Min [1 ]
Sun, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Key Lab Informat Photon & Opt Commun, Minist Educ, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-coefficient Zakharov-Kuznetsov equation; Hirota method; N-soliton solution; Symbolic computation; KADOMTSEV-PETVIASHVILI EQUATION; BACKLUND TRANSFORMATION; SYMBOLIC COMPUTATION; KDV EQUATION; MODEL; NEBULONS; FORM; PROPERTY; FIBERS;
D O I
10.1007/s11071-010-9713-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation of B-type (BKP) is hereby investigated. New soliton solutions and soliton-like similarity solutions are constructed for the (2+1)-dimensional BKP equation. The similarity solutions are not travelling wave solutions when the arbitrary functions involved are chosen appropriately. Painlev, test shows that there are two solution branches, one of which has the resonance -2. And four similarity reductions for the BKP equation are given out through nontrivial variable transformations. Moreover, abundant soliton behaviour modes of the solutions, such as soliton fusion and soliton reflection, are discussed in detail.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 27 条
[11]   Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg-de Vries equation in fluids [J].
Jiang, Yan ;
Tian, Bo ;
Liu, Wen-Jun ;
Sun, Kun ;
Li, Min .
APPLIED MATHEMATICS LETTERS, 2013, 26 (04) :402-407
[12]   Homoclinic and N-soliton solutions to variable-coefficient KP equation arising two-temperature ions in dusty plasma [J].
Lan, Lan ;
Manafian, Jalil ;
Eslami, Baharak ;
Hussein, A. H. A. ;
Mahmoud, K. H. ;
Alsubaie, A. S. A. ;
Taki, Anmar Ghanim ;
Hajar, Afandiyeva .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
[13]   Bell-polynomial approach and N-soliton solution for the extended Lotka-Volterra equation in plasmas [J].
Qin, Bo ;
Tian, Bo ;
Liu, Li-Cai ;
Wang, Ming ;
Lin, Zhi-Qiang ;
Liu, Wen-Jun .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[14]   Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, N-soliton solutions and auto-Backlund transformation for a variable-coefficient variant Boussinesq system [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
CHAOS SOLITONS & FRACTALS, 2021, 152
[15]   Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation [J].
Gao, Xin-Yi ;
Chen, Xiu-Qing ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
[16]   The Painleve property, Backlund transformation, Lax pair and new analytic solutions of a generalized variable-coefficient KdV equation from fluids and plasmas [J].
Zhang Yuping ;
Wang Junyi ;
Wei Guangmei ;
Liu Ruiping .
PHYSICA SCRIPTA, 2015, 90 (06)
[17]   Painleve integrability and N-soliton solution for the Whitham-Broer-Kaupshallow water model using symbolic computation [J].
Zhang, Cheng ;
Tian, Bo ;
Meng, Xiang-Hua ;
Lue, Xing ;
Cai, Ke-Jie ;
Geng, Tao .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (5-6) :253-260
[18]   Painleve analysis, Lax pair, Backlund transformation and multi-soliton solutions for a generalized variable-coefficient KdV-mKdV equation in fluids and plasmas [J].
Meng, Gao-Qing ;
Gao, Yi-Tian ;
Yu, Xin ;
Shen, Yu-Jia ;
Qin, Yi .
PHYSICA SCRIPTA, 2012, 85 (05)
[19]   Analytic N-solitary-wave solution of a variable-coefficient Gardner equation from fluid dynamics and plasma physics [J].
Xu, Xiao-Ge ;
Meng, Xiang-Hua ;
Gao, Yi-Tian ;
Wen, Xiao-Yong .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :313-320
[20]   Soliton stability and numerical simulation for the (2+1)-dimensional variable-coefficient breaking soliton equation in fluids and plasmas [J].
Hu, Cong-Cong .
NONLINEAR DYNAMICS, 2025, 113 (10) :12037-12045