Overconvergent modular forms and the Fontaine-Mazur conjecture

被引:111
作者
Kisin, M [1 ]
机构
[1] Univ Munster, D-4400 Munster, Germany
关键词
D O I
10.1007/s00222-003-0293-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Fontaine and Mazur on modularity of representations of G(Q) which are potentially semi-stable at p, for representations coming from finite slope, overconvergent eigenforms. We also give an application of our technique to a question of Gouvea on overconvergence of certain modular forms. If rho is a suitable representation of G(Q,S) on a two dimensional vector space over a finite field product of G(m) and the S a finite set of primes-we construct a rigid analytic subspace of the universal deformation space of rho, which is defined by a purely representation theoretic condition, and contains the eigencurve of Coleman-Mazur. Conjecturally, it is equal to this curve.
引用
收藏
页码:373 / 454
页数:82
相关论文
共 42 条
[1]  
André Y, 2002, INVENT MATH, V148, P285, DOI 10.1007/s002220100207
[2]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[3]  
BLOCH S, 1990, PROG MATH, V86, P333
[4]   The generic fiber of the universal deformation space associated to a tame Galois representation [J].
Bockle, G .
MANUSCRIPTA MATHEMATICA, 1998, 96 (02) :231-246
[5]  
Bosch S., 1984, GRUNDLEHREN MATH WIS, V261
[6]   EXPLICIT DEFORMATION OF GALOIS REPRESENTATIONS [J].
BOSTON, N .
INVENTIONES MATHEMATICAE, 1991, 103 (01) :181-196
[7]   Companion forms and weight one forms [J].
Buzzard, K ;
Taylor, R .
ANNALS OF MATHEMATICS, 1999, 149 (03) :905-919
[8]  
Buzzard K, 2001, DUKE MATH J, V109, P283
[9]  
Coleman R., 1998, LONDON MATH SOC LECT, V254, P1
[10]  
Coleman R. F., 1997, J THEOR NOMBR BORDX, V9, P395