LOCKING-FREE CG-TYPE FINITE ELEMENT SOLVERS FOR LINEAR ELASTICITY ON SIMPLICIAL MESHES

被引:0
作者
Wang, Ruishu [1 ]
Wang, Zhuoran [2 ]
Liu, Jiangguo [3 ]
Tavener, Simon [3 ]
Zhang, Ran [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
[3] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Bernardi-Raugel spaces; enriched Lagrangian elements; linear elasticity; locking-free; simplicial meshes; INCOMPRESSIBLE ELASTICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents numerical methods for solving linear elasticity on simplicial meshes based on enrichment of Lagrangian bilinear/trilinear finite elements. This is a renovated use of the classical 1st order Bernardi-Raugel spaces, which were originally designed for Stokes flow. A projection to the elementwise constant space is employed to handle the dilation (divergence of displacement) in the strain-div formulation. Mixed (both Dirichlet and Neumann) boundary conditions are considered for error estimates in the energy-norm and the L-2-norms of displacement and stress. Rigorous analysis and numerical experiments demonstrate that these methods are free of Poisson-locking. Renovation of other Stokes element pairs to linear elasticity is also examined.
引用
收藏
页码:690 / 711
页数:22
相关论文
共 36 条
  • [1] Adams RA., 1975, Sobolev Spaces
  • [2] Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers
    Ainsworth, M
    Senior, B
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 150 (1-4) : 65 - 87
  • [3] Matlab implementation of the finite element method in elasticity
    Alberty, J
    Carstensen, C
    Funken, SA
    Klose, R
    [J]. COMPUTING, 2002, 69 (03) : 239 - 263
  • [4] [Anonymous], 2008, The Mathematical Theory of Finite Element Methods
  • [5] Mixed finite elements for elasticity
    Arnold, DN
    Winther, R
    [J]. NUMERISCHE MATHEMATIK, 2002, 92 (03) : 401 - 419
  • [6] NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY
    Arnold, Douglas N.
    Awanou, Gerard
    Winther, Ragnar
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (04) : 783 - 796
  • [7] Arnold Douglas N., 1984, CALCOLO, V21, P344
  • [8] BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
  • [9] BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
  • [10] Brenner SC, 2004, MATH COMPUT, V73, P1067