Optimal control of the obstacle in semilinear variational inequalities

被引:11
作者
Bergounioux, M
Lenhart, S
机构
[1] Univ Orleans, Dept Math, Lab MAPMO, UFR Sci, F-45067 Orleans, France
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
optimal control; obstacle problem; variational inequalities; semilinear elliptic equations;
D O I
10.1007/s11117-004-5009-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an optimal control problem where the state satisfies an obstacle type semilinear variational inequality and the control function is the obstacle. The state is chosen to be close to a desired profile while the obstacle is not too large in H (1)(0) (Omega), and H-2-bounded. We prove that an optimal control exists and give necessary optimality conditions, using approximation techniques.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 10 条
  • [1] Optimal control of the obstacle for an elliptic variational inequality
    Adams, DR
    Lenhart, SM
    Yong, J
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) : 121 - 140
  • [2] ADAMS DR, IN PRESS J MATH ANAL
  • [3] ADAMS DR, IN PRESS APPL MATH O
  • [4] Barbu V, 1993, Mathematics in Science and Engineering, V190
  • [5] BERGOUNIOUX M, 2002, J NONLINEAR CONVEX A, V3
  • [6] Chen QH, 2000, ACTA MATH SIN, V16, P123
  • [7] Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
  • [8] Lions J.-L., 1968, CONTROLE OPTIMAL SYS
  • [9] LOU H, OPTIMAL CONTROL PROB
  • [10] On the regularity of an obstacle control problem
    Lou, HW
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 32 - 51