Optimal control of the obstacle in semilinear variational inequalities

被引:12
作者
Bergounioux, M
Lenhart, S
机构
[1] Univ Orleans, Dept Math, Lab MAPMO, UFR Sci, F-45067 Orleans, France
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
optimal control; obstacle problem; variational inequalities; semilinear elliptic equations;
D O I
10.1007/s11117-004-5009-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an optimal control problem where the state satisfies an obstacle type semilinear variational inequality and the control function is the obstacle. The state is chosen to be close to a desired profile while the obstacle is not too large in H (1)(0) (Omega), and H-2-bounded. We prove that an optimal control exists and give necessary optimality conditions, using approximation techniques.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 10 条
[1]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[2]  
ADAMS DR, IN PRESS J MATH ANAL
[3]  
ADAMS DR, IN PRESS APPL MATH O
[4]  
Barbu V, 1993, Mathematics in Science and Engineering, V190
[5]  
BERGOUNIOUX M, 2002, J NONLINEAR CONVEX A, V3
[6]  
Chen QH, 2000, ACTA MATH SIN, V16, P123
[7]  
Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
[8]  
Lions J.-L., 1968, CONTROLE OPTIMAL SYS
[9]  
LOU H, OPTIMAL CONTROL PROB
[10]   On the regularity of an obstacle control problem [J].
Lou, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :32-51