Distinctive Subpopulations of Stromal Cells Are Present in Human Lymph Nodes Infiltrated with Melanoma

被引:17
作者
Eom, Jennifer [1 ,2 ]
Park, Saem Mul [1 ,2 ]
Feisst, Vaughan [1 ,2 ]
Chen, Chun-Jen J. [1 ,2 ]
Mathy, Joanna E. [1 ,2 ]
McIntosh, Julie D. [1 ,2 ]
Angel, Catherine E. [1 ,2 ]
Bartlett, Adam [2 ,3 ]
Martin, Richard [4 ]
Mathy, Jon A. [3 ,5 ]
Cebon, Jonathan S. [6 ]
Black, Michael A. [2 ,7 ]
Brooks, Anna E. S. [1 ,2 ]
Dunbar, P. Rod [1 ,2 ]
机构
[1] Univ Auckland, Sch Biol Sci, Auckland, New Zealand
[2] Univ Auckland, Maurice Wilkins Ctr, Auckland, New Zealand
[3] Univ Auckland, Fac Med Hlth Sci, Dept Surg, Auckland, New Zealand
[4] Waitemata Dist Hlth Board, Dept Surg, Auckland, New Zealand
[5] Auckland Reg Plast Reconstruct & Hand Surg Unit, Auckland, New Zealand
[6] La Trobe Univ, Olivia Newton John Canc Res Inst, Sch Canc Med, Heidelberg, Vic, Australia
[7] Univ Otago, Dept Biochem, Dunedin, New Zealand
关键词
FIBROBLASTIC RETICULAR CELLS; MESENCHYMAL STEM-CELLS; MATRIX ARCHITECTURE; EXPRESSION; MIGRATION; POPULATIONS; HOMEOSTASIS; PRECURSORS; MORPHOLOGY; DEFINES;
D O I
10.1158/2326-6066.CIR-19-0796
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Metastasis of human tumors to lymph nodes (LN) is a universally negative prognostic factor. LN stromal cells (SC) play a crucial role in enabling T-cell responses, and because tumor metastases modulate their structure and function, this interaction may suppress immune responses to tumor antigens. The SC subpopulations that respond to infiltration of malignant cells into human LNs have not been defined. Here, we identify distinctive subpopulations of CD90(+) SCs present in melanoma-infiltrated LNs and compare them with their counterparts in normal LNs. The first population (CD90(+) podoplanin(+) CD105(+) CD146(+) CD271(+) VCAM-1(+) ICAM-1(+) alpha-SMA(+)) corresponds to fibroblastic reticular cells that express various T-cell modulating cytokines, chemokines, and adhesion molecules. The second (CD90(+) CD34(+) CD105(+) CD271(+)) represents a novel population of CD34(+) SCs embedded in collagenous structures, such as the capsule and trabeculae, that predominantly produce extracellular matrix. We also demonstrated that these two SC subpopulations are distinct from two subsets of human LN pericytes, CD90(+) CD146(+) CD36(+) NG2(-) pericytes in the walls of high endothelial venules and other small vessels, and CD90(+) CD146(+) NG2(+) CD36(-) pericytes in the walls of larger vessels. Distinguishing between these CD90(+) SC subpopulations in human LNs allows for further study of their respective impact on T-cell responses to tumor antigens and clinical outcomes.
引用
收藏
页码:990 / 1003
页数:14
相关论文
共 52 条
[1]   Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises [J].
Armulik, Annika ;
Genove, Guillem ;
Betsholtz, Christer .
DEVELOPMENTAL CELL, 2011, 21 (02) :193-215
[2]   Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes [J].
Bajenoff, Marc ;
Egen, Jackson G. ;
Koo, Lily Y. ;
Laugier, Jean Pierre ;
Brau, Frederic ;
Glaichenhaus, Nicolas ;
Germain, Ronald N. .
IMMUNITY, 2006, 25 (06) :989-1001
[3]   B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells [J].
Bajenoff, Marc ;
Germain, Ronald N. .
BLOOD, 2009, 114 (24) :4989-4997
[4]   Lymphotoxin-β Receptor Signaling through NF-κB2-RelB Pathway Reprograms Adipocyte Precursors as Lymph Node Stromal Cells [J].
Benezech, Cecile ;
Mader, Emma ;
Desanti, Guillaume ;
Khan, Mahmood ;
Nakamura, Kyoko ;
White, Andrea ;
Ware, Carl F. ;
Anderson, Graham ;
Caamano, Jorge H. .
IMMUNITY, 2012, 37 (04) :721-734
[5]   Stromal infrastructure of the lymph node and coordination of immunity [J].
Chang, Jonathan E. ;
Turley, Shannon J. .
TRENDS IN IMMUNOLOGY, 2015, 36 (01) :30-39
[6]   FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast Tumors [J].
Cremasco, Viviana ;
Astarita, Jillian L. ;
Grauel, Angelo L. ;
Keerthivasan, Shilpa ;
MacIsaac, Kenzie ;
Woodruff, Matthew C. ;
Wu, Michael ;
Spel, Lotte ;
Santoro, Stephen ;
Amoozgar, Zohreh ;
Laszewski, Tyler ;
Migoni, Sara Cruz ;
Knoblich, Konstantin ;
Fletcher, Anne L. ;
LaFleur, Martin ;
Wucherpfennig, Kai W. ;
Pure, Ellen ;
Dranoff, Glenn ;
Carroll, Michael C. ;
Turley, Shannon J. .
CANCER IMMUNOLOGY RESEARCH, 2018, 6 (12) :1472-1485
[7]   A perivascular origin for mesenchymal stem cells in multiple human organs [J].
Crisan, Mihaela ;
Yap, Solomon ;
Casteilla, Louis ;
Chen, Chien-Wen ;
Corselli, Mirko ;
Park, Tea Soon ;
Andriolo, Gabriella ;
Sun, Bin ;
Zheng, Bo ;
Zhang, Li ;
Norotte, Cyrille ;
Teng, Pang-Ning ;
Traas, Jeremy ;
Schugar, Rebecca ;
Deasy, Bridget M. ;
Badylak, Stephen ;
Buehring, Hans-Joerg ;
Giacobino, Jean-Paul ;
Lazzari, Lorenza ;
Huard, Johnny ;
Peault, Bruno .
CELL STEM CELL, 2008, 3 (03) :301-313
[8]   Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells [J].
Denton, Alice E. ;
Roberts, Edward W. ;
Linterman, Michelle A. ;
Fearon, Douglas T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (33) :12139-12144
[9]  
Díaz-Flores L, 2014, HISTOL HISTOPATHOL, V29, P831, DOI 10.14670/HH-29.831
[10]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317