Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran

被引:155
作者
Gao, Zhi [1 ]
Li, Chenyue [1 ]
Fan, Guoli [1 ]
Yang, Lan [1 ]
Li, Feng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen-doped carbon; Copper-based nanocatalyst; Catalytic transfer hydrogenolysis; 5-hydroxymethylfurfural; Biomass transformation; LIQUID FUEL 2,5-DIMETHYLFURAN; METAL-FREE ELECTROCATALYSTS; OXYGEN REDUCTION REACTIONS; LAYERED DOUBLE HYDROXIDES; TRANSFER HYDROGENATION; PHASE HYDROGENATION; MILD CONDITIONS; BIOMASS; TRANSFORMATION; CONVERSION;
D O I
10.1016/j.apcatb.2018.01.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Currently, highly efficient transformation of abundant and low-cost renewable raw biomass into high-quality biofuels and important chemicals is one of the most promising solutions to the current energy crisis, rapid consumption of fossil resources, increasing emission of greenhouse gases and serious environmental pollution. Here, convertible production of promising 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) biofuels wag achieved successfully via green catalytic transfer hydrogenolysis of biomass-derived 5-hydro-xymethylfurfural (HMF) using a nitrogen-doped carbon (NC)-decorated copper-based catalyst with cyclohexanol as hydrogen source. DMF or DMTHF with high yield of 96.1% or 94.6% was produced convertibly through simply modulating reaction time. Extensive characterizations revealed that appropriate surface base sites on the catalyst could efficiently promote the activation of alcohol hydroxyl in cyclohexanol and the subsequent release of active hydrogen species, while highly dispersed surface Cu nanoparticles and electrophilic Cu+ species were beneficial to the hydrogen transfer and the activation of both the carbonyl group and the hydroxyl group in HMF, respectively. Moreover, as-fabricated NC-decorated Cu-based catalyst presented high stability without obvious loss of catalytic performance after five consecutive cycles, due to the strong interaction between the support and active metal species. Such non-noble metal catalyst has a promising industrial application in the production of valuable biomass fuels.
引用
收藏
页码:523 / 533
页数:11
相关论文
共 62 条
[1]   Continuous D-Fructose Dehydration to 5-Hydroxymethylfurfural Under Mild Conditions [J].
Aellig, Christof ;
Hermans, Ive .
CHEMSUSCHEM, 2012, 5 (09) :1737-1742
[2]   Lactic acid production from hydroxyacetone on dual metal/base heterogeneous catalytic systems [J].
Albuquerque, Elise M. ;
Borges, Luiz E. P. ;
Fraga, Marco A. .
GREEN CHEMISTRY, 2015, 17 (07) :3889-3899
[3]   Copper-Zinc Alloy Nanopowder: A Robust Precious-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural [J].
Bottari, Giovanni ;
Kumalaputri, Angela J. ;
Krawczyk, Krzysztof K. ;
Feringa, Ben L. ;
Heeres, Hero J. ;
Barta, Katalin .
CHEMSUSCHEM, 2015, 8 (08) :1323-1327
[4]   Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity [J].
Chatterjee, Maya ;
Ishizaka, Takayuki ;
Kawanami, Hajime .
GREEN CHEMISTRY, 2014, 16 (03) :1543-1551
[5]   Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran [J].
Chen, Bingfeng ;
Li, Fengbo ;
Huang, Zhijun ;
Yuan, Guoqing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 200 :192-199
[6]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[7]   Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides [J].
Chheda, Juben N. ;
Roman-Leshkov, Yuriy ;
Dumesic, James A. .
GREEN CHEMISTRY, 2007, 9 (04) :342-350
[8]   A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids [J].
Chidambaram, Mandan ;
Bell, Alexis T. .
GREEN CHEMISTRY, 2010, 12 (07) :1253-1262
[9]   Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures [J].
Climent, MJ ;
Corma, A ;
Iborra, S ;
Epping, K ;
Velty, A .
JOURNAL OF CATALYSIS, 2004, 225 (02) :316-326
[10]   Supported metal particles from LDH nanocomposite precursors:: Control of the metal particle size at increasing metal content [J].
Gérardin, C ;
Kostadinova, D ;
Sanson, N ;
Coq, B ;
Tichit, D .
CHEMISTRY OF MATERIALS, 2005, 17 (25) :6473-6478