Valorizing a hydrothermal liquefaction aqueous phase through co-production of chemicals and lipids using the oleaginous yeast Yarrowia lipolytica

被引:35
作者
Cordova, Lauren T. [1 ]
Lad, Beena C. [2 ]
Ali, Sabah A. [1 ]
Schmidt, Andrew J. [3 ]
Billing, Justin M. [3 ]
Pomraning, Kyle [3 ]
Hofstad, Beth [3 ]
Swita, Marie S. [3 ]
Collett, James R. [3 ]
Alper, Hal S. [1 ,4 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, 200 E Dean Keeton St Stop C0400, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mol Biosci, 100 East 24th St Stop A5000, Austin, TX 78712 USA
[3] Pacific Northwest Natl Lab, Chem & Biol Proc Grp, Richland, WA 99352 USA
[4] Univ Texas Austin, Inst Cellular & Mol Biol, 2500 Speedway Ave, Austin, TX 78712 USA
关键词
Hydrothermal Liquefaction Aqueous Phase; Yarrowia lipolytica; Co-production; TRIACETIC ACID LACTONE; VOLATILE FATTY-ACIDS; ANAEROBIC-DIGESTION; WASTE-WATER; RENEWABLE DIESEL; BIOCONVERSION; ALGAE;
D O I
10.1016/j.biortech.2020.123639
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Hydrothermal liquefaction is a promising technology to upgrade wet organic waste into a biocrude oil for diesel or jet fuel; however, this process generates an acid-rich aqueous phase which poses disposal issues. This hydrothermal liquefaction aqueous phase (HTL-AP) contains organic acids, phenol, and other toxins. This work demonstrates that Y. lipolytica as a unique host to valorize HTL-AP into a variety of co-products. Specifically, strains of Y. lipolytica can tolerate HTL-AP at 10% in defined media and 25% in rich media. The addition of HTLAP enhances production of the polymer precursor itaconic acid by 3-fold and the polyketide triacetic acid lactone at least 2-fold. Additional co-products (lipids and citric acid) were produced in these fermentations. Finally, bioreactor cultivation enabled 21.6 g/L triacetic acid lactone from 20% HTL-AP in mixed sugar hydrolysate. These results demonstrate the first use of Y. lipolytica in HTL-AP valorization toward production of a portfolio of value-added compounds.
引用
收藏
页数:9
相关论文
共 48 条
  • [1] Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process
    Biller, P.
    Ross, A. B.
    Skill, S. C.
    Lea-Langton, A.
    Balasundaram, B.
    Hall, C.
    Riley, R.
    Llewellyn, C. A.
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01): : 70 - 76
  • [2] Metabolic engineering of Yarrowia lipolytica for itaconic acid production
    Blazeck, John
    Hill, Andrew
    Jamoussi, Mariam
    Pan, Anny
    Miller, Jarrett
    Alper, Hal S.
    [J]. METABOLIC ENGINEERING, 2015, 32 : 66 - 73
  • [3] Carsanba E., 2019, Non-conventional Yeasts: from Basic Research to Application, P91, DOI DOI 10.1007/978-3-030-21110-3_4
  • [4] Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste
    Chen, Wan-Ting
    Zhang, Yuanhui
    Lee, Timothy H.
    Wu, Zhenwei
    Si, Buchun
    Lee, Chia-Fon F.
    Lin, Alice
    Sharma, Brajendra K.
    [J]. NATURE SUSTAINABILITY, 2018, 1 (11): : 702 - 710
  • [5] Chen XW, 2016, ENERG ENVIRON SCI, V9, P1237, DOI [10.1039/c5ee03718b, 10.1039/C5EE03718B]
  • [6] Triacetic acid lactone as a potential biorenewable platform chemical
    Chia, Mei
    Schwartz, Thomas J.
    Shanks, Brent H.
    Dumesic, James A.
    [J]. GREEN CHEMISTRY, 2012, 14 (07) : 1850 - 1853
  • [7] Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover
    Collett, James R.
    Billing, Justin M.
    Meyer, Pimphan A.
    Schmidt, Andrew J.
    Remington, A. Brook
    Hawley, Erik R.
    Hofstad, Beth A.
    Panisko, Ellen A.
    Dai, Ziyu
    Hart, Todd R.
    Santosa, Daniel M.
    Magnuson, Jon K.
    Hallen, Richard T.
    Jones, Susanne B.
    [J]. APPLIED ENERGY, 2019, 233 : 840 - 853
  • [8] Cordova L.T., 2020, Metabolic Engineering Communications, V10, pe00105, DOI DOI 10.1016/J.MEC.2019.E00105
  • [9] Production of -linolenic acid in Yarrowia lipolytica using low-temperature fermentation
    Cordova, Lauren T.
    Alper, Hal S.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (20) : 8809 - 8816
  • [10] Demirbas A, 2009, BIOFUELS SECURING PL