METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS

被引:49
作者
Beresnevich, V. V. [1 ]
Bernik, V. I. [1 ]
Kleinbock, D. Y. [2 ]
Margulis, G. A. [3 ]
机构
[1] Natl Belarus Acad Sci, Inst Math, Dept Number Theory, Minsk 220072, BELARUS
[2] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
Diophantine approximation; Khintchine type theorems; metric theory of Diophantine approximation;
D O I
10.17323/1609-4514-2002-2-2-203-225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to prove a Khintchine type theorem on divergence of linear Diophantine approximation on non-degenerate manifolds, which completes earlier results for convergence.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 52 条
[1]   ON A THEOREM OF SPRINDZUK [J].
BAKER, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 292 (1428) :92-&
[2]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[3]  
BAKER A., 1990, CAMBRIDGE MATH LIB
[5]   A Groshev type theorem for convergence on manifolds [J].
Beresnevich, V .
ACTA MATHEMATICA HUNGARICA, 2002, 94 (1-2) :99-130
[6]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[7]  
Beresnevich V., 2000, Vesci Akad. Navuk BSSR, V2, P14
[8]  
BERESNEVICH V, 2000, VESTSI NATS AKAD FMN, P35
[9]  
Beresnevich V. V., 1999, PREPRINT
[10]  
Beresnevich V. V., 2000, DOKL NATS AKAD NAUK, V44