Nonlinear-dynamics theory of up-down transitions in neocortical neural networks

被引:24
作者
Ghorbani, Maryam [1 ]
Mehta, Mayank [1 ,2 ,3 ,4 ]
Bruinsma, Robijn [1 ]
Levine, Alex J. [1 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Neurobiol, Dept Neurol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Integrat Ctr Learning & Memory, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Keck Ctr Neurophys, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
基金
美国国家科学基金会;
关键词
SLOW OSCILLATIONS; SENSORY RESPONSES; NEURONAL NETWORKS; IN-VIVO; HIPPOCAMPAL; MODEL; STATE; AFTERHYPERPOLARIZATION; FLUCTUATIONS; ADAPTATION;
D O I
10.1103/PhysRevE.85.021908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The neurons of the neocortex show similar to 1-Hz synchronized transitions between an active up state and a quiescent down state. The up-down state transitions are highly coherent over large sections of the cortex, yet they are accompanied by pronounced, incoherent noise. We propose a simple model for the up-down state oscillations that allows analysis by straightforward dynamical systems theory. An essential feature is a nonuniform network geometry composed of groups of excitatory and inhibitory neurons with strong coupling inside a group and weak coupling between groups. The enhanced deterministic noise of the up state appears as the natural result of the proximity of a partial synchronization transition. The synchronization transition takes place as a function of the long-range synaptic strength linking different groups of neurons.
引用
收藏
页数:14
相关论文
共 20 条
  • [1] UP-DOWN cortical dynamics reflect state transitions in a bistable network
    Jercog, Daniel
    Roxin, Alex
    Bertho, Peter
    Luczak, Artur
    Compte, Albert
    de la Rocha, Jaime
    ELIFE, 2017, 6
  • [2] Effects of short-term plasticity in UP-DOWN cortical dynamics
    Vich, C.
    Giossi, C.
    Massobrio, P.
    Guillamon, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [3] Energy-efficiency computing of up and down transitions in a neural network
    Liu, Xiaoqian
    Lu, Lulu
    Zhu, Yuan
    Yi, Ming
    JOURNAL OF NEUROPHYSIOLOGY, 2023, 129 (03) : 581 - 590
  • [4] Modelling nonlinear vehicle dynamics with neural networks
    Rutherford, Simon J.
    Cole, David J.
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2010, 53 (04) : 260 - 287
  • [5] A neural network model of spontaneous up and down transitions
    Xu, Xuying
    Ni, Li
    Wang, Rubin
    NONLINEAR DYNAMICS, 2016, 84 (03) : 1541 - 1551
  • [6] A design principle for neuronal firing with up-down oscillation through Na+ dynamics
    Sato, Tomohide R.
    Ode, Koji L.
    Kinoshita, Fukuaki L.
    Ueda, Hiroki R.
    ISCIENCE, 2025, 28 (02)
  • [7] Nonlinear dynamics and chaos in fractional-order neural networks
    Kaslik, Eva
    Sivasundaram, Seenith
    NEURAL NETWORKS, 2012, 32 : 245 - 256
  • [8] Nonlinear dynamics and machine learning of recurrent spiking neural networks
    Maslennikov, O. V.
    Pugavko, M. M.
    Shchapin, D. S.
    Nekorkin, V. I.
    PHYSICS-USPEKHI, 2022, 65 (10) : 1020 - 1038
  • [9] Electromagnetic radiation control for nonlinear dynamics of Hopfield neural networks
    Yao, Wei
    Fang, Jia
    Yu, Fei
    Xiong, Li
    Tang, Lihong
    Zhang, Jin
    Sun, Yichuang
    CHAOS, 2024, 34 (07)
  • [10] Network Critical Slowing Down: Data-Driven Detection of Critical Transitions in Nonlinear Networks
    Pirani, Mohammad
    Jafarpour, Saber
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 573 - 585