Monotonic solutions of a quadratic integral equation of Volterra type

被引:73
作者
Banas, J
Martinon, A
机构
[1] Rzeszow Univ Technol, Dept Math, PL-35959 Rzeszow, Poland
[2] Univ La Laguna, Dept Math Anal, San Cristobal la Laguna 38271, Spain
关键词
quadratic integral equation; measure of noncompactness; fixed-point theorem; monotonic solutions;
D O I
10.1016/S0898-1221(04)00011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear quadratic integral equation of Volterra type in the Banach space of real functions defined and continuous on a bounded and closed interval. With the help of a suitable measure of noncompactness, we show that the mentioned integral equation has monotonic solutions. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 19 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Global existence for nonlinear operator inclusions [J].
Agarwal, RP ;
O'Regan, D .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (11-12) :131-139
[3]  
[Anonymous], 1998, EXISTENCE THEORY NON
[4]   QUADRATIC EQUATIONS AND APPLICATIONS TO CHANDRASEKHAR AND RELATED EQUATIONS [J].
ARGYROS, IK .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 32 (02) :275-292
[5]   Existence theorems for some quadratic integral equations [J].
Banas, J ;
Lecko, M ;
El-Sayed, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :276-285
[6]   Solvability of Volterra-Stieltjes operator-integral equations and their applications [J].
Banas, J ;
Sadarangani, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (12) :1535-1544
[7]  
Banas J., 1981, Demonstratio Math., V14, P127
[8]  
Banas J., 1980, Measure of noncompactness in Banach space
[9]  
Banas& J., 2001, Annales Societatis Mathematicae Polonae. Seria 1: Commentationes Mathematicae, V41, P13
[10]  
BUSBRIDGE LW, 1960, MATH RADIATIVE TRANS