Solid-State Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na3Zr2Si2PO12 Interface

被引:46
作者
Sun, Zheng [1 ]
Zhao, Yongjie [1 ]
Ni, Qing [1 ]
Liu, Yang [1 ]
Sun, Chen [1 ]
Li, Jingbo [1 ]
Jin, Haibo [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
dendrite-free batteries; ferroelectric phase; Na; Zr-3; Si-2; 2PO; (12) interfaces; solid-state sodium metal batteries; ION BATTERIES; SODIUM METAL; ELECTROLYTE; TRANSPORT; CHEMISTRY; ANODES; GROWTH;
D O I
10.1002/smll.202200716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state metal batteries are attracting unprecedented concern because of their high energy density and safety. However, their service life, especially at high specific density, is hindered by the undesirable reversibility of metal anodes, owing to the inhomogeneous ion distribution and awkward charge transfer dynamics at the electrode/electrolyte interface. In this work, it is well demonstrated that ferroelectric phase BaTiO3 reinforced Na3Zr2Si2PO12 ceramic electrolyte can deconcentrate the distribution of charge transfer and self-accelerate Na+ migration at the Na/Na3Zr2Si2PO12 interface upon cycling, realizing a compact Na deposition morphology together with a high critical current density (1.05 mA cm(-2) at ambient conditions). Assembled symmetric cells based on the proposed composite electrolyte render stable cycling up to 1000 h at 0.3 mA cm(-2). Specifically, the all solid-state sodium metal batteries paired with Na3V1.5Cr0.5(PO4)(3) cathode material can deliver a capacity of 95 mAh g(-1) at 100 mA g(-1) and maintain 84.4% of the initial capacity after 400 cycles. This excellent electrochemical performance clearly confirm the feasibility of the introduction of ferroelectric BaTiO3 to suppress the dendrite nucleation and Na propagation within ceramic electrolyte. This research offers new insight into the rational design of inorganic electrolyte, revealing dendrite-free and long-term all-solid-state sodium batteries.
引用
收藏
页数:8
相关论文
共 41 条
[1]   BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives [J].
Acosta, M. ;
Novak, N. ;
Rojas, V. ;
Patel, S. ;
Vaish, R. ;
Koruza, J. ;
Rossetti, G. A., Jr. ;
Roedel, J. .
APPLIED PHYSICS REVIEWS, 2017, 4 (04)
[2]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[3]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [10.1017/S0305004100032680, 10.1017/50305004100032680]
[4]   A new approach for toughening of ceramics [J].
Chen, XM ;
Yang, B .
MATERIALS LETTERS, 1997, 33 (3-4) :237-240
[5]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[6]   Reducing Interfacial Resistance by Na-SiO2 Composite Anode for NASICON-Based Solid-State Sodium Battery [J].
Fu, Haoyu ;
Yin, Qingyang ;
Huang, Ying ;
Sun, Huabin ;
Chen, Yuwei ;
Zhang, Ruiqi ;
Yu, Qian ;
Gu, Lian ;
Duan, Jian ;
Luo, Wei .
ACS MATERIALS LETTERS, 2020, 2 (02) :127-132
[7]   Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface [J].
Gao, Zhonghui ;
Yang, Jiayi ;
Yuan, Haiyang ;
Fu, Haoyu ;
Li, Yutao ;
Li, Yuyu ;
Ferber, Thimo ;
Guhl, Conrad ;
Sun, Huabin ;
Jaegermann, Wolfram ;
Hausbrand, Rene ;
Huang, Yunhui .
CHEMISTRY OF MATERIALS, 2020, 32 (09) :3970-3979
[8]   FAST NA+-ION TRANSPORT IN SKELETON STRUCTURES [J].
GOODENOUGH, JB ;
HONG, HYP ;
KAFALAS, JA .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :203-220
[9]   Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries [J].
Guin, M. ;
Tietz, F. .
JOURNAL OF POWER SOURCES, 2015, 273 :1056-1064
[10]   Shaping Li Deposits from Wild Dendrites to Regular Crystals via the Ferroelectric Effect [J].
Guo, Yanpeng ;
Wang, Renyan ;
Cui, Can ;
Xiong, Rundi ;
Wei, Yaqing ;
Zhai, Tianyou ;
Li, Huiqiao .
NANO LETTERS, 2020, 20 (10) :7680-7687