Convergence of adaptive finite element methods for general second order linear elliptic PDEs

被引:164
作者
Mekchay, K [1 ]
Nochetto, RH
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
a posteriori error estimators; quasi-orthogonality; adaptive mesh refinement; error and oscillation reduction estimates; optimal meshes;
D O I
10.1137/04060929X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove convergence of adaptive finite element methods (AFEMs) for general (nonsymmetric) second order linear elliptic PDEs, thereby extending the result of Morin, Nochetto, and Siebert [SIAM J. Numer. Anal., 38 (2000), pp. 466-488; SIAM Rev., 44 (2002), pp. 631-658]. The proof relies on quasi-orthogonality, which accounts for the bilinear form not being a scalar product, together with novel error and oscillation reduction estimates, which now do not decouple. We show that AFEMs are a contraction for the sum of energy error plus oscillation. Numerical experiments, including oscillatory coefficients and both coercive and noncoercive convection-diffusion PDE, illustrate the theory and yield optimal meshes.
引用
收藏
页码:1803 / 1827
页数:25
相关论文
共 13 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]   An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems [J].
Chen, ZM ;
Feng, J .
MATHEMATICS OF COMPUTATION, 2004, 73 (247) :1167-1193
[3]  
Ciarlet P.G., 2002, CLASSICS APPL MATH, V40
[4]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[5]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[6]  
Kellogg R.B., 1974, APPL ANAL, V4, P101, DOI DOI 10.1080/00036817408839086
[7]   Data oscillation and convergence of adaptive FEM [J].
Morin, P ;
Nochetto, RH ;
Siebert, KG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :466-488
[8]  
MORIN P., 2002, SIAM REV, V44, P631
[9]  
NOCHETTO RH, 1993, I LOMBARDO SCI LET A, V127, P67
[10]  
SCHATZ AH, 1974, MATH COMPUT, V28, P959, DOI 10.1090/S0025-5718-1974-0373326-0