Blow-up phenomena for a pseudo-parabolic equation with variable exponents

被引:50
作者
Di, Huafei [1 ]
Shang, Yadong [1 ]
Peng, Xiaoming [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
Pseudo-parabolic equation; Blow up; Lower bound; Variable exponent; LOWER BOUNDS; TIME;
D O I
10.1016/j.aml.2016.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a pseudo-parabolic equation with nonlinearities of variable exponent type u(t) - nu Delta u(t) - div(vertical bar del u vertical bar(m(x)-2)del u) = vertical bar u vertical bar(p(x)-2)u, in Omega x(0,T), associated with initial and Dirichlet boundary conditions. By means of a differential inequality technique, we obtain an upper bound for blow-up time if variable exponents p(.), m(.) and the initial data satisfy some conditions. Also, a lower bound for blow-up time is determined under some other conditions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 18 条
[1]  
Al'shin A.B., 2011, Blow up in nonlinear sobolev type equations
[2]  
Antontsev S.N., 2002, PROGR NONLINEAR DIFF, V48
[3]   Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source [J].
Baghaei, Khadijeh ;
Ghaemi, Mohammad Bagher ;
Hesaaraki, Mahmoud .
APPLIED MATHEMATICS LETTERS, 2014, 27 :49-52
[4]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[5]  
DZEKTSER ES, 1972, DOKL AKAD NAUK SSSR+, V202, P1031
[6]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[7]   A blow-up result for nonlinear generalized heat equation [J].
Kbiri Alaoui, M. ;
Messaoudi, S. A. ;
Khenous, H. B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) :1723-1732
[8]  
Korpusov MO, 2003, Comput. Math. Math. Phys., V43, P1765
[9]   Asymptotic behaviour of solutions to some pseudoparabolic equations [J].
Liu, Yan ;
Jiang, Weisheng ;
Huang, Falun .
APPLIED MATHEMATICS LETTERS, 2012, 25 (02) :111-114
[10]   Blow-up phenomena for a pseudo-parabolic equation [J].
Luo, Peng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) :2636-2641