A Multipoint Flux Approximation with a Diamond Stencil and a Non-Linear Defect Correction Strategy for the Numerical Solution of Steady State Diffusion Problems in Heterogeneous and Anisotropic Media Satisfying the Discrete Maximum Principle

被引:4
作者
Cavalcante, T. M. [1 ]
Lira Filho, R. J. M. [1 ]
Souza, A. C. R. [1 ]
Carvalho, D. K. E. [2 ]
Lyra, P. R. M. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Civil Engn, Inst Petr & Energy Res, Room 541,Av Arquitetura S-N, BR-50740550 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Mech Engn, Recife, PE, Brazil
关键词
3D diffusion problems; Heterogeneous and anisotropic media; Unstructured tetrahedral meshes; Discrete maximum principle (DMP); MPFA-DNL; FINITE-VOLUME METHOD; UNSTRUCTURED GRIDS; DISCRETIZATION; EQUATIONS; ACCURACY; SCHEMES;
D O I
10.1007/s10915-022-01978-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we solve the steady state diffusion equation in 3D domains by means of a cell-centered finite volume method that uses a Multipoint Flux Approximation with a Diamond Stencil and a Non-Linear defect correction strategy (MPFA-DNL) to guarantee the Discrete Maximum Principle (DMP). Our formulation is based in the fact that the flux of MPFA methods can be split into two different parts: a Two Point Flux Approximation (TPFA) component and the Cross-Diffusion Terms (CDT). In the linear MPFA-D method, this split is particularly simple since it lies at the core of the original method construction. In this context, we introduce a non-linear defect correction, aiming to mitigate, whenever necessary, the contributions from the CDT, avoiding, this way, spurious oscillations and DMP violations. Our new MPFA-DNL scheme is locally conservative and capable of dealing with arbitrary anisotropic diffusion tensors and unstructured meshes, without harming the second order convergence rates of the original MPFA-D. To appraise the accuracy and robustness of our formulation, we solve some benchmark problems found in literature. In this paper, we restrict ourselves to tetrahedral meshes, even though, in principle, there is no restriction to extend the method to other polyhedral control volumes.
引用
收藏
页数:15
相关论文
共 37 条
[1]   A compact multipoint flux approximation method with improved robustness [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Mallison, B. T. ;
Nordbotten, J. M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) :1329-1360
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[3]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[4]  
Arnold DN, 2000, LECT NOTES COMP SCI, V11, P89
[5]  
Borsuk M, 2006, DIRICHLET PROBLEM EL, P165, DOI [10.1016/S0924-6509(06)80018-8, DOI 10.1016/S0924-6509(06)80018-8]
[6]   Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes [J].
Burman, E ;
Ern, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :641-646
[7]   Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations [J].
Cances, Clement ;
Cathala, Mathieu ;
Le Potier, Christophe .
NUMERISCHE MATHEMATIK, 2013, 125 (03) :387-417
[8]   A multipoint flux approximation with diamond stencil finite volume scheme for the two-dimensional simulation of fluid flows in naturally fractured reservoirs using a hybrid-grid method [J].
Cavalcante, Tulio de M. ;
Contreras, Fernando Raul L. ;
Lyra, Paulo R. M. ;
de Carvalho, Darlan Karlo E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (10) :1322-1351
[9]   Enriched multi-point flux approximation for general grids [J].
Chen, Qian-Yong ;
Wan, Jing ;
Yang, Yahan ;
Mifflin, Rick T. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (03) :1701-1721
[10]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4