Head orientation Estimation using neural network

被引:0
作者
Zhao, Youen [1 ]
Yan, Hua [1 ]
机构
[1] Shandong Univ Finance & Econ, Dept Comp Sci & Technol, Jinan, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4 | 2012年
关键词
head orientation estimation; neural network; feature vector; key points; local texture;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
in this paper; we propose neural-network based schemes to solve the head orientation estimation (HOE) problem. Faces are detected using the Ycbcr skin detection method, and then we labeled the detected faces k key points manually that present different orientations, the coordinates and local textures of the k key points are obtained to compose the input feature vectors of the neural networks. By training 1300 data sets, the results show that the neural network based method can estimate head orientation at the correct rate of 90%.
引用
收藏
页码:2075 / 2078
页数:4
相关论文
共 7 条
  • [1] Unsupervised and adaptive Gaussian skin-color model
    Bergasa, LM
    Mazo, M
    Gardel, A
    Sotelo, MA
    Boquete, L
    [J]. IMAGE AND VISION COMPUTING, 2000, 18 (12) : 987 - 1003
  • [2] Gourier N., 2004, Proc. Pointing 2004 Workshop, P17
  • [3] Face detection in color images
    Hsu, RL
    Abdel-Mottaleb, M
    Jain, AK
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 696 - 706
  • [4] Support vector machine based multi-view face detection and recognition
    Li, YM
    Gong, SG
    Sherrah, J
    Liddell, H
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (05) : 413 - 427
  • [5] Murphy-Chutorian E., 2007, Intelligent Transportation Syst. Conf., P709
  • [6] Head Pose Estimation in Computer Vision: A Survey
    Murphy-Chutorian, Erik
    Trivedi, Mohan Manubhai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (04) : 607 - 626
  • [7] Yongmin Li, 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P300, DOI 10.1109/AFGR.2000.840650