The density of polynomials of degree n$n$ over Zp${\mathbb {Z}}_p$ having exactly r$r$ roots in Qp${\mathbb {Q}}_p$

被引:2
作者
Bhargava, Manjul [1 ]
Cremona, John [2 ]
Fisher, Tom [3 ]
Gajovic, Stevan [4 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
[3] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] Univ Groningen, Fac Sci & Engn, Groningen, Netherlands
基金
美国国家科学基金会;
关键词
EQUATION; NUMBER;
D O I
10.1112/plms.12438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the probability that a random polynomial of degree n$n$ over Zp${\mathbb {Z}}_p$ has exactly r$r$ roots in Qp${\mathbb {Q}}_p$, and show that it is given by a rational function of p$p$ that is invariant under replacing p$p$ by 1/p$1/p$.
引用
收藏
页码:713 / 736
页数:24
相关论文
共 23 条
[11]   Functional equations and uniformity for local zeta functions of nilpotent groups [J].
duSautoy, MPF ;
Lubotzky, A .
AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (01) :39-90
[12]  
Evans Steven N., 2006, Electron. Comm. Probab, V11, P278, DOI DOI 10.1214/ECP.V11-1230
[13]  
Kac M., 1943, Bull. Amer. Math. Soc., V49, P938, DOI DOI 10.1090/S0002-9904-1943-07912-8
[14]   p-Adic Integral Geometry [J].
Kulkarni, Avinash ;
Lerario, Antonio .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2021, 5 (01) :28-59
[15]  
Limmer D.J., 1999, THESIS OREGON STATE
[16]  
Littlewood J. E., 1938, J. London Math. Soc., V13, P288, DOI 10.1112/jlms/s1-13.4.288
[17]   .on the number of real roots of a random algebraic equation. II [J].
Littlewood, JE ;
Offord, AC .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :133-148
[18]  
Maslova N. B., 1974, Theory of Probability and Its Applications, V19, P35, DOI 10.1137/1119004
[19]  
Maslova Nina B, 1975, Theory of Probability & Its Applications, V19, P461
[20]   RANDOM POLYNOMIALS: CENTRAL LIMIT THEOREMS FOR THE REAL ROOTS [J].
Nguyen, Oanh ;
Van vu .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (17) :3745-3813