The density of polynomials of degree n$n$ over Zp${\mathbb {Z}}_p$ having exactly r$r$ roots in Qp${\mathbb {Q}}_p$

被引:1
作者
Bhargava, Manjul [1 ]
Cremona, John [2 ]
Fisher, Tom [3 ]
Gajovic, Stevan [4 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
[3] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] Univ Groningen, Fac Sci & Engn, Groningen, Netherlands
基金
美国国家科学基金会;
关键词
EQUATION; NUMBER;
D O I
10.1112/plms.12438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the probability that a random polynomial of degree n$n$ over Zp${\mathbb {Z}}_p$ has exactly r$r$ roots in Qp${\mathbb {Q}}_p$, and show that it is given by a rational function of p$p$ that is invariant under replacing p$p$ by 1/p$1/p$.
引用
收藏
页码:713 / 736
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 1943, Rec. Math. Mat. Sbornik N.S.
[2]   What is the Probability that a Random Integral Quadratic Form in n Variables has an Integral Zero? [J].
Bhargava, Manjul ;
Cremona, John E. ;
Fisher, Tom ;
Jones, Nick G. ;
Keating, Jonathan P. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (12) :3828-3848
[3]  
Bloch A, 1932, P LOND MATH SOC, V33, P102
[4]   The probability that a random monic p-adic polynomial splits [J].
Buhler, Joe ;
Goldstein, Daniel ;
Moews, David ;
Rosenberg, Joel .
EXPERIMENTAL MATHEMATICS, 2006, 15 (01) :21-32
[5]  
Caruso X., 2021, PREPRINT
[6]   Representation stability in cohomology and asymptotics for families of varieties over finite fields [J].
Church, Thomas ;
Ellenberg, Jordan S. ;
Farb, Benson .
ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 :1-54
[7]  
Cohen S.D., 1970, Acta Arith., V17, P255, DOI [10.4064/aa-17-3-255-271, DOI 10.4064/AA-17-3-255-271]
[8]   Random polynomials having few or no real zeros [J].
Dembo, A ;
Poonen, B ;
Shao, QM ;
Zeitouni, O .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (04) :857-892
[9]   Definable sets, motives and p-adic integrals [J].
Denef, J ;
Loeser, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :429-469
[10]   A FUNCTIONAL-EQUATION OF IGUSA LOCAL ZETA FUNCTION [J].
DENEF, J ;
MEUSER, D .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (06) :1135-1152