Nanostructured TiO2 and Its Application in Lithium-Ion Storage

被引:155
作者
Myung, Seung-Taek [1 ,2 ,3 ]
Takahashi, Naohiro [1 ]
Komaba, Shinichi [4 ]
Yoon, Chong Seung [5 ]
Sun, Yang-Kook [6 ]
Amine, Khalil [7 ]
Yashiro, Hitoshi [1 ]
机构
[1] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan
[2] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[3] Sejong Univ, Graphene Res Inst, Seoul 143747, South Korea
[4] Tokyo Univ Sci, Dept Appl Chem, Shinjuku Ku, Tokyo 1628601, Japan
[5] Hanyang Univ, Dept Mat Sci & Engn, Seoul 13379, South Korea
[6] Hanyang Univ, Dept WCU Energy Engn & Chem Engn, Seoul 13379, South Korea
[7] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA
基金
新加坡国家研究基金会;
关键词
TITANIUM-OXIDE NANOTUBES; SENSITIZED SOLAR-CELLS; WET-CHEMICAL REACTIONS; TITANATE NANOTUBES; HYDROTHERMAL SYNTHESIS; TRITITANATE NANOTUBES; NANOWIRES; ELECTRODE; INTERCALATION; ANATASE;
D O I
10.1002/adfm.201002724
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Titania nanorods and nanowires are synthesized via a hydrothermal reaction of amorphous TiO2 in alkaline NaOH, followed by ion exchange in HCl aqueous solution, and dehydration at 400 degrees C. Although the hydrothermal treatment produces three different particle morphologies depending on the reaction time (nanosheets, nanorods, and nanowires), the products exhibit the same crystal structure. Ion exchange of Na2Ti3O7 in HCl aqueous solution brings about a phase change to H2Ti3O7, but there is no change in the particle morphology. Dehydration of the nanostructured H2Ti3O7 leads to two types of crystal structure-anatase TiO2 for the nanorods, and TiO2-B for the nanowires-although no significant difference is found in the morphology of the products even after dehydration. The nanorods are 40-50 nm in length and 10 nm in diameter, whereas the nanowires are several micrometers in length and tens to hundreds of nanometers in thickness. In-situ X-ray diffraction revealed the formation of anatase TiO2 from the TiO2-B above 450 degrees C. This finding implies that the phase transformation occurs rather slowly for the TiO2-B nanowires due to the larger particle size and higher crystallinity of H2Ti3O7. Tests with Li-metal half cells indicated that the anatase TiO2 nanorods are more favorable for the storage and release of Li ions because of their greater surface area than the TiO2-B nanowires.
引用
收藏
页码:3231 / 3241
页数:11
相关论文
共 48 条
[1]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[2]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[3]  
Chen Q, 2002, ADV MATER, V14, P1208, DOI 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO
[4]  
2-0
[5]   The structure of trititanate nanotubes [J].
Chen, Q ;
Du, GH ;
Zhang, S ;
Peng, LM .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :587-593
[6]   Solvent-controlled synthesis of TiO2 1D nanostructures:: Growth mechanism and characterization [J].
Das, Kajari ;
Panda, Subhendu K. ;
Chaudhuri, Subhadra .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (16) :3792-3799
[7]   Preparation and structure analysis of titanium oxide nanotubes [J].
Du, GH ;
Chen, Q ;
Che, RC ;
Yuan, ZY ;
Peng, LM .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3702-3704
[8]   HIGH-RATE, GAS-PHASE GROWTH OF MOS2 NESTED INORGANIC FULLERENES AND NANOTUBES [J].
FELDMAN, Y ;
WASSERMAN, E ;
SROLOVITZ, DJ ;
TENNE, R .
SCIENCE, 1995, 267 (5195) :222-225
[9]   Titanium oxide nanotubes prepared in phosphate electrolytes [J].
Ghicov, A ;
Tsuchiya, H ;
Macak, JM ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) :505-509
[10]   Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Sigle, Wilfried ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (16) :2087-+