Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein

被引:35
作者
Tan, Fu-Rong [1 ]
Dai, Li-Chun [1 ]
Wu, Bo [1 ]
Qin, Han [1 ]
Shui, Zong-Xia [1 ]
Wang, Jing-Li [1 ]
Zhu, Qi-Li [1 ]
Hu, Qi-Chun [1 ,2 ]
Ruan, Zhi-Yong [3 ]
He, Ming-Xiong [1 ,2 ]
机构
[1] Minist Agr, Biogas Inst, Biomass Energy Technol Res Ctr, Sect 4 13, Chengdu 610041, Peoples R China
[2] Minist Agr, Key Lab Dev & Applicat Rural Renewable Energy, Chengdu 610041, Peoples R China
[3] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
关键词
Furfural tolerance; Ethanol production; Global transcription machinery engineering; Error-prone PCR; Sigma factor; RpoD protein; ESCHERICHIA-COLI; ETHANOL-PRODUCTION; RNA-POLYMERASE; TRANSCRIPTION MACHINERY; FERMENTATION; STRAIN; ACID; XYLOSE; STRATEGIES; INHIBITORS;
D O I
10.1007/s00253-015-6577-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (sigma(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.
引用
收藏
页码:5363 / 5371
页数:9
相关论文
共 45 条
[1]   Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4 [J].
Agrawal, Manoj ;
Chen, Rachel Ruizhen .
BIOTECHNOLOGY LETTERS, 2011, 33 (11) :2127-2133
[2]   Global transcription machinery engineering: A new approach for improving cellular phenotype [J].
Alper, Hal ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :258-267
[3]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[4]   Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production [J].
Barakat, Abdellatif ;
Monlau, Florian ;
Steyer, Jean-Philippe ;
Carrere, Helene .
BIORESOURCE TECHNOLOGY, 2012, 104 :90-99
[5]   How sigma docks to RNA polymerase and what sigma does [J].
Burgess, RR ;
Anthony, L .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (02) :126-131
[6]  
Chong H., 2013, PLoS One, V8, P1
[7]   PROMOTER AND NUCLEOTIDE-SEQUENCES OF THE ZYMOMONAS-MOBILIS PYRUVATE DECARBOXYLASE [J].
CONWAY, T ;
OSMAN, YA ;
KONNAN, JI ;
HOFFMANN, EM ;
INGRAM, LO .
JOURNAL OF BACTERIOLOGY, 1987, 169 (03) :949-954
[8]   Engineering microbes for tolerance to next-generation biofuels [J].
Dunlop, Mary J. .
BIOTECHNOLOGY FOR BIOFUELS, 2011, 4
[9]   A MUTANT ESCHERICHIA-COLI SIGMA-70 SUBUNIT OF RNA-POLYMERASE WITH ALTERED PROMOTER SPECIFICITY [J].
GARDELLA, T ;
MOYLE, H ;
SUSSKIND, MM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 206 (04) :579-590
[10]   Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases [J].
Geddes, C. C. ;
Peterson, J. J. ;
Roslander, C. ;
Zacchi, G. ;
Mullinnix, M. T. ;
Shanmugam, K. T. ;
Ingram, L. O. .
BIORESOURCE TECHNOLOGY, 2010, 101 (06) :1851-1857