Explicit Brill-Noether-Petri general curves

被引:9
作者
Arbarello, Enrico [1 ]
Bruno, Andrea [2 ]
Farkas, Gavril [3 ]
Sacca, Giulia [4 ]
机构
[1] Univ Roma Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale A Moro 2, I-00185 Rome, Italy
[2] Univ Rome Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[3] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[4] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
Brill-Noether theory; moduli of curves; surfaces with canonical sections; LINEAR-SYSTEMS; DIVISORS; THEOREM; PROOF;
D O I
10.4171/CMH/392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(1),..., p(9) be the points in A(2)(Q) subset of P-2(Q) with coordinates (-2, 3), (-1, -4), (2, 5) (4, 9), (52, 375), (5234, 37866), (8, -23), (43, 282), (1/4, -33/8), respectively. We prove that, for any genus g, a plane curve of degree 3g having a g-tuple point at p(1), ..., p(8), and a (g - 1)-tuple point at p(9), and no other singularities, exists and that the general plane curve of that degree and with those singularities is a Brill-Noether-Petri general curve of genus g.
引用
收藏
页码:477 / 491
页数:15
相关论文
共 22 条
[1]  
Andre Y., 1996, PUBL MATH-PARIS, V83, P5, DOI 10.1007/BF02698643
[2]  
[Anonymous], GRADUATE TEXTS MATH
[3]  
Arbarello E., 2011, FUNDAMENTAL PRINCIPL, V268
[4]  
Arbarello E., 2015, ARXIV150705002V2
[5]   RATIONAL SURFACES WITH A LARGE GROUP OF AUTOMORPHISMS [J].
Cantat, Serge ;
Dolgachev, Igor .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) :863-905
[6]   A tropical proof of the Brill-Noether Theorem [J].
Cools, Filip ;
Draisma, Jan ;
Payne, Sam ;
Robeva, Elina .
ADVANCES IN MATHEMATICS, 2012, 230 (02) :759-776
[7]  
De Fernex T., 2010, ARXIV10015243V2
[8]  
du Val P., 1933, P LONDON MATH SOC S, V35, P1
[9]   THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES OF GENUS-GREATER-THAN-OR-EQUAL-TO-23 [J].
EISENBUD, D ;
HARRIS, J .
INVENTIONES MATHEMATICAE, 1987, 90 (02) :359-387
[10]   A SIMPLER PROOF OF THE GIESEKER-PETRI THEOREM ON SPECIAL DIVISORS [J].
EISENBUD, D ;
HARRIS, J .
INVENTIONES MATHEMATICAE, 1983, 74 (02) :269-280