WEAK SOLUTIONS OF NAVIER-STOKES EQUATIONS CONSTRUCTED BY ARTIFICIAL COMPRESSIBILITY METHOD ARE SUITABLE

被引:11
作者
Donatelli, Donatella [1 ]
Spirito, Stefano [1 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
Incompressible Navier-Stokes equation; suitable weak solution; INCOMPRESSIBLE LIMIT; PARTIAL REGULARITY; APPROXIMATIONS;
D O I
10.1142/S0219891611002330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that weak solutions constructed by artificial compressibility method are suitable in the sense of Scheffer. Using Hilbertian setting and Fourier transform with respect to time, we obtain non-trivial estimates on the pressure and the time derivative which allow us to pass to the limit.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 27 条
[11]  
LIONS JL, 1959, CR HEBD ACAD SCI, V248, P2847
[12]  
Lions P. L, 1996, Mathematical Topics in Fluid Dynamics
[13]   Incompressible limit for a viscous compressible fluid [J].
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (06) :585-627
[14]  
Oskolkov A. P., 1971, ZAP NAUCHN SEM LOMI, V21, P79
[15]  
Prohl A., 1997, ADV NUMERICAL MATH
[16]  
RANNACHER R, 1992, LECT NOTES MATH, V1530, P167
[17]   PARTIAL REGULARITY OF SOLUTIONS TO NAVIER-STOKES EQUATIONS [J].
SCHEFFER, V .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 66 (02) :535-552
[18]   NAVIER-STOKES EQUATIONS IN SPACE DIMENSION-4 [J].
SCHEFFER, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :41-68
[19]   THE NAVIER-STOKES EQUATIONS ON A BOUNDED DOMAIN [J].
SCHEFFER, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 73 (01) :1-42
[20]   HAUSDORFF MEASURE AND NAVIER-STOKES EQUATIONS [J].
SCHEFFER, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :97-112