WEAK SOLUTIONS OF NAVIER-STOKES EQUATIONS CONSTRUCTED BY ARTIFICIAL COMPRESSIBILITY METHOD ARE SUITABLE

被引:11
作者
Donatelli, Donatella [1 ]
Spirito, Stefano [1 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
Incompressible Navier-Stokes equation; suitable weak solution; INCOMPRESSIBLE LIMIT; PARTIAL REGULARITY; APPROXIMATIONS;
D O I
10.1142/S0219891611002330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that weak solutions constructed by artificial compressibility method are suitable in the sense of Scheffer. Using Hilbertian setting and Fourier transform with respect to time, we obtain non-trivial estimates on the pressure and the time derivative which allow us to pass to the limit.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 27 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[3]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&
[4]  
DAVEIGA HB, 1985, J MATH PURE APPL, V64, P321
[5]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[6]  
DONATELLI D, INDIANA U M IN PRESS
[7]   A dispersive approach to the artificial compressibility approximations of the Navier-Stokes equations in 3D [J].
Donatelli, Donatella ;
Marcati, Pierangelo .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (03) :575-588
[8]   Faedo-Galerkin weak solutions of the Navier-Stokes equations with Dirichlet boundary conditions are suitable [J].
Guermond, J.-L. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (01) :87-106
[9]  
Lions J. L., 1969, QUELQUES METHODES RE
[10]  
Lions J.-L., 1978, NONLINEAR EVOLUTION, V40, P59