Electrochemical performance of flexible graphene-based fibers as electrodes for wearable supercapacitors

被引:17
|
作者
Jia, Yunming [1 ]
Zhou, Lan [1 ]
Shao, Jianzhong [1 ]
机构
[1] Zhejiang Sci Tech Univ, Minist Educ, Engn Res Ctr Ecodyeing & Finishing Text, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Carbon nanotube; Flexibility; Fiber spring; Supercapacitor; ALL-SOLID-STATE; CARBON NANOTUBES; FABRICATION; COMPOSITES; CAPACITOR;
D O I
10.1016/j.synthmet.2018.09.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The miniaturized supercapacitors are promising energy storage devices that can replace traditional batteries in portable electronics. Excellent graphene-based fibers have becoming a dominant role as electrode materials for supercapacitors. Unique and excellent carbon nanotubes and graphene composite fibers (G/CNTs) with outstanding mechanical properties and excellent capacitive behaviors were prepared by a facile, one-step and timesaving process. Scanning electron microscopy images displayed that the diameter of obtained G/CNTs was similar to 150 mu m, and showed a directional structure of graphene nanosheets and few-walled carbon nanotubes (FWNTs) along the specific direction of the as-prepared composite fibers. The electrochemical performances of the resultant fibers as flexible electrodes were estimated by a three-electrode system. The as-synthesized G/CNTs delivered a specific volumetric capacitance of 312.6 F g(-1) at the current density of 200 mA g(-1), and the capacitance of Gio/CNTs could still remain at 89.6% of original capacitance after 10,000 cycles. Furthermore, the flexible G/CNTs could be fabricated into a stretchable and compressible fiber spring. The fiber super capacitor displayed much efficient electrochemical capacitive behaviors, promising for being portable and wearable electronics, and this development can potentially promote its application in other fields.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 50 条
  • [1] Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors
    Huang, Liang
    Santiago, Diana
    Loyselle, Patricia
    Dai, Liming
    SMALL, 2018, 14 (43)
  • [2] Graphene-based electrochemical supercapacitors
    S. R. C. Vivekchand
    Chandra Sekhar Rout
    K. S. Subrahmanyam
    A. Govindaraj
    C. N. R. Rao
    Journal of Chemical Sciences, 2008, 120 : 9 - 13
  • [3] Graphene-based electrochemical supercapacitors
    Vivekchand, S. R. C.
    Rout, Chandra Sekhar
    Subrahmanyam, K. S.
    Govindaraj, A.
    Rao, C. N. R.
    JOURNAL OF CHEMICAL SCIENCES, 2008, 120 (01) : 9 - 13
  • [4] Recent Progress in Flexible Graphene-Based Composite Fiber Electrodes for Supercapacitors
    Wu, Songmei
    CRYSTALS, 2021, 11 (12)
  • [5] Progress in flexible supercapacitors for wearable electronics using graphene-based organic frameworks
    Shalini, S.
    Naveen, T. B.
    Durgalakshmi, D.
    Balakumar, S.
    Rakkesh, R. Ajay
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [6] Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat
    Xie, Taiping
    Zhang, Li
    Wang, Yuan
    Wang, Yajing
    Wang, Xinxing
    CERAMICS INTERNATIONAL, 2019, 45 (02) : 2516 - 2520
  • [7] Flexible Graphene-Based Supercapacitors: A Review
    Chee, W. K.
    Lim, H. N.
    Zainal, Z.
    Huang, N. M.
    Harrison, I.
    Andou, Y.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08): : 4153 - 4172
  • [8] Graphene-based materials for flexible supercapacitors
    Shao, Yuanlong
    El-Kady, Maher F.
    Wang, Lisa J.
    Zhang, Qinghong
    Li, Yaogang
    Wang, Hongzhi
    Mousavi, Mir F.
    Kaner, Richard B.
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) : 3639 - 3665
  • [9] Graphene-based flexible and wearable electronics
    Tanmoy Das
    Bhupendra K.Sharma
    Ajit K.Katiyar
    Jong-Hyun Ahn
    Journal of Semiconductors, 2018, 39 (01) : 90 - 108
  • [10] Graphene-based flexible and wearable electronics
    Das, Tanmoy
    Sharma, Bhupendra K.
    Katiyar, Ajit K.
    Ahn, Jong-Hyun
    JOURNAL OF SEMICONDUCTORS, 2018, 39 (01)