Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

被引:14
作者
Azaria, P. [1 ]
Konik, R. M. [2 ]
Lecheminant, P. [3 ]
Palmai, T. [4 ]
Takacs, G. [4 ,5 ]
Tsvelik, A. M. [2 ]
机构
[1] Univ Paris 06, CNRS, Lab Phys Theor & Mat Condensee, 4 Pl Jussieu, F-75005 Paris, France
[2] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
[3] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, Site St Martin, F-95300 Cergy Pontoise, France
[4] MTA BME Momentum Stat Field Theory Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
关键词
CURRENT-ALGEBRA; QCD; BOSONIZATION; SYMMETRY; SPECTRUM; DENSITY;
D O I
10.1103/PhysRevD.94.045003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we study a (1 + 1)-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, mu, is zero, we describe the formation of fermion three-quark (nucleons and Delta baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at mu = 0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phases with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).
引用
收藏
页数:15
相关论文
共 39 条
  • [1] CRITICAL-THEORY OF QUANTUM SPIN CHAINS
    AFFLECK, I
    HALDANE, FDM
    [J]. PHYSICAL REVIEW B, 1987, 36 (10): : 5291 - 5300
  • [2] ON THE REALIZATION OF CHIRAL SYMMETRY IN (1 + 1) DIMENSIONS
    AFFLECK, I
    [J]. NUCLEAR PHYSICS B, 1986, 265 (03) : 448 - 468
  • [3] EXACT CRITICAL EXPONENTS FOR QUANTUM SPIN CHAINS, NONLINEAR SIGMA-MODELS AT THETA=PI AND THE QUANTUM HALL-EFFECT
    AFFLECK, I
    [J]. NUCLEAR PHYSICS B, 1986, 265 (03) : 409 - 447
  • [4] QCD at finite baryon density: nucleon droplets and color superconductivity
    Alford, M
    Rajagopal, K
    Wilczek, F
    [J]. PHYSICS LETTERS B, 1998, 422 (1-4) : 247 - 256
  • [5] [Anonymous], 2010, Non-Perturbative Field Theory-From Two Dimensional Conformal field Theory to QCD in Four Dimensions
  • [6] Nonperturbative study of the two-frequency sine-Gordon model
    Bajnok, Z
    Palla, L
    Takács, G
    Wágner, F
    [J]. NUCLEAR PHYSICS B, 2001, 601 (03) : 503 - 538
  • [7] Phase structure of the massive chiral Gross-Neveu model from the Hartree-Fock approach
    Boehmer, Christian
    Fritsch, Ulf
    Kraus, Sebastian
    Thies, Michael
    [J]. PHYSICAL REVIEW D, 2008, 78 (06):
  • [8] Non-integrable aspects of the multi-frequency sine-Gordon model
    Delfino, G
    Mussardo, G
    [J]. NUCLEAR PHYSICS B, 1998, 516 (03) : 675 - 703
  • [9] Di Francesco P., 1997, GRADUATE TEXTS CONT, DOI DOI 10.1007/978-1-4612-2256-9
  • [10] Critical properties of the double-frequency sine-Gordon model with applications
    Fabrizio, M
    Gogolin, AO
    Nersesyan, AA
    [J]. NUCLEAR PHYSICS B, 2000, 580 (03) : 647 - 687