Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

被引:14
作者
Azaria, P. [1 ]
Konik, R. M. [2 ]
Lecheminant, P. [3 ]
Palmai, T. [4 ]
Takacs, G. [4 ,5 ]
Tsvelik, A. M. [2 ]
机构
[1] Univ Paris 06, CNRS, Lab Phys Theor & Mat Condensee, 4 Pl Jussieu, F-75005 Paris, France
[2] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
[3] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, Site St Martin, F-95300 Cergy Pontoise, France
[4] MTA BME Momentum Stat Field Theory Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
关键词
CURRENT-ALGEBRA; QCD; BOSONIZATION; SYMMETRY; SPECTRUM; DENSITY;
D O I
10.1103/PhysRevD.94.045003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we study a (1 + 1)-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, mu, is zero, we describe the formation of fermion three-quark (nucleons and Delta baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at mu = 0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phases with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).
引用
收藏
页数:15
相关论文
共 39 条
[1]   CRITICAL-THEORY OF QUANTUM SPIN CHAINS [J].
AFFLECK, I ;
HALDANE, FDM .
PHYSICAL REVIEW B, 1987, 36 (10) :5291-5300
[2]   ON THE REALIZATION OF CHIRAL SYMMETRY IN (1 + 1) DIMENSIONS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1986, 265 (03) :448-468
[3]   EXACT CRITICAL EXPONENTS FOR QUANTUM SPIN CHAINS, NONLINEAR SIGMA-MODELS AT THETA=PI AND THE QUANTUM HALL-EFFECT [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1986, 265 (03) :409-447
[4]   QCD at finite baryon density: nucleon droplets and color superconductivity [J].
Alford, M ;
Rajagopal, K ;
Wilczek, F .
PHYSICS LETTERS B, 1998, 422 (1-4) :247-256
[5]  
[Anonymous], 2010, Non-Perturbative Field Theory-From Two Dimensional Conformal field Theory to QCD in Four Dimensions
[6]   Nonperturbative study of the two-frequency sine-Gordon model [J].
Bajnok, Z ;
Palla, L ;
Takács, G ;
Wágner, F .
NUCLEAR PHYSICS B, 2001, 601 (03) :503-538
[7]   Phase structure of the massive chiral Gross-Neveu model from the Hartree-Fock approach [J].
Boehmer, Christian ;
Fritsch, Ulf ;
Kraus, Sebastian ;
Thies, Michael .
PHYSICAL REVIEW D, 2008, 78 (06)
[8]   Non-integrable aspects of the multi-frequency sine-Gordon model [J].
Delfino, G ;
Mussardo, G .
NUCLEAR PHYSICS B, 1998, 516 (03) :675-703
[9]  
Di Francesco P., 1997, GRADUATE TEXTS CONT, DOI DOI 10.1007/978-1-4612-2256-9
[10]   Critical properties of the double-frequency sine-Gordon model with applications [J].
Fabrizio, M ;
Gogolin, AO ;
Nersesyan, AA .
NUCLEAR PHYSICS B, 2000, 580 (03) :647-687