Object-based classification as an alternative approach to the traditional pixel-based classification to identify potential habitat of the Grasshopper Sparrow

被引:31
作者
Jobin, Benoit [1 ]
Labrecque, Sandra [1 ]
Grenier, Marcelle [1 ]
Falardeau, Gilles [1 ]
机构
[1] Canadian Wildlife Serv, Ste Foy, PQ G1V 4H5, Canada
关键词
ammodramus savannarum; Grasshopper Sparrow; object-based classification; pixel-based classification; Quebec; segmentation;
D O I
10.1007/s00267-007-9031-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Quebec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.
引用
收藏
页码:20 / 31
页数:12
相关论文
共 67 条
[1]  
[Anonymous], 2005, INTRO DIGITAL IMAGE
[2]  
Askins RA, 1999, STUD AVIAN BIOL-SER, P60
[3]  
Askins Robert A., 1993, Current Ornithology, V11, P1
[4]  
Baatz Martin., 2004, eCognition Professional User Guide, V4
[5]   Demographic characteristics of a Grasshopper Sparrow population in a highly fragmented landscape of western New York State [J].
Balent, KL ;
Norment, CJ .
JOURNAL OF FIELD ORNITHOLOGY, 2003, 74 (04) :341-348
[6]   Agriculture intensification and forest fragmentation in the St. Lawrence valley, Quebec, Canada [J].
Bélanger, L ;
Grenier, M .
LANDSCAPE ECOLOGY, 2002, 17 (06) :495-507
[7]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[8]  
Blaschke T., 2001, Geo-Informations-Systeme, V14, P12
[9]  
Brennan LA, 2005, J WILDLIFE MANAGE, V69, P1, DOI 10.2193/0022-541X(2005)069&lt
[10]  
0001:NAGBAU&gt