Arabic Handwritten Characters Recognition Using Convolutional Neural Network

被引:10
|
作者
AlJarrah, Mohammed N. [1 ]
Zyout, Mo'ath M. [1 ]
Duwairi, Rehab [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Comp Informat Syst, Irbid, Jordan
关键词
Convolutional Neural Network; Deep Learning; Arabic Handwritten Recognition; NUMBER;
D O I
10.1109/ICICS52457.2021.9464596
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic handwritten characters' recognition is one of Artificial intelligence applications which is considered an interesting research area and important in various fields. Many studies have been conducted for the recognition of English handwritten characters and fewer works are available for the Arabic language because of the diversity in characters' shapes according to their positions in the words. Convolutional Neural Networks are efficient for handwritten characters' recognition. In this paper, a Convolutional Neural Network has been proposed for handwritten characters' recognition. The model has been trained on a dataset of 16,800 images of handwritten Arabic characters with different shapes to perform classification. The proposed model achieved high recognition accuracy of 97.2%, outperforming other state-of-art models. When applying data augmentation, the model achieved better results and accuracy of 97.7%
引用
收藏
页码:182 / 188
页数:7
相关论文
共 50 条
  • [1] Arabic Handwritten Characters Recognition using Convolutional Neural Network
    Najadat, Hassan M.
    Alshboul, Ahmad A.
    Alabed, Abdullah F.
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2019, : 147 - 151
  • [2] Handwritten Arabic numerals recognition using convolutional neural network
    Pratik Ahamed
    Soumyadeep Kundu
    Tauseef Khan
    Vikrant Bhateja
    Ram Sarkar
    Ayatullah Faruk Mollah
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 5445 - 5457
  • [3] Handwritten Arabic numerals recognition using convolutional neural network
    Ahamed, Pratik
    Kundu, Soumyadeep
    Khan, Tauseef
    Bhateja, Vikrant
    Sarkar, Ram
    Mollah, Ayatullah Faruk
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 5445 - 5457
  • [4] Recognition of Urdu Handwritten Characters Using Convolutional Neural Network
    Husnain, Mujtaba
    Missen, Malik Muhammad Saad
    Mumtaz, Shahzad
    Jhanidr, Muhammad Zeeshan
    Coustaty, Mickael
    Luqman, Muhammad Muzzamil
    Ogier, Jean-Marc
    Choi, Gyu Sang
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [5] Optical Character Recognition of Arabic Handwritten Characters using Neural Network
    Hussien, Rana S.
    Elkhidir, Azza A.
    Elnourani, Mohamed G.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, CONTROL, NETWORKING, ELECTRONICS AND EMBEDDED SYSTEMS ENGINEERING (ICCNEEE), 2015, : 456 - 461
  • [6] BomoNet: Bangla Handwritten Characters Recognition Using Convolutional Neural Network
    Rabby, A. K. M. Shahariar Azad
    Haque, Sadeka
    Islam, Md. Sanzidul
    Abujar, Sheikh
    Hossain, Syed Akhter
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 528 - 535
  • [7] On-line recognition of handwritten Arabic characters using A Kohonen neural network
    Mezghani, N
    Mitiche, A
    Cheriet, M
    EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS, 2002, : 490 - 495
  • [8] An intelligent approach for Arabic handwritten letter recognition using convolutional neural network
    Ullah, Zahid
    Jamjoom, Mona
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [9] KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network
    Ali, Sardar Hasen
    Abdulrazzaq, Maiwan Bahjat
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 429 - 448
  • [10] RECOGNITION OF ARABIC HANDWRITTEN CHARACTERS USING RESIDUAL NEURAL NETWORKS
    Al-Taani, Ahmad T.
    Ahmad, Sadeem T.
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2021, 7 (02): : 192 - 205