A parameterless scale-space approach to find meaningful modes in histograms - Application to image and spectrum segmentation

被引:183
作者
Gilles, Jerome [1 ]
Heal, Kathryn [2 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Histogram; meaningful modes; scale-space; segmentation; WAVELET;
D O I
10.1142/S0219691314500441
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present an algorithm to automatically detect meaningful modes in a histogram. The proposed method is based on the behavior of local minima in a scale-space representation. We show that the detection of such meaningful modes is equivalent in a two classes clustering problem on the length of minima scale-space curves. The algorithm is easy to implement, fast and does not require any parameter. We present several results on histogram and spectrum segmentation, grayscale image segmentation and color image reduction.
引用
收藏
页数:17
相关论文
共 23 条
[1]   Extraction of noise tolerant, gray-scale transform and rotation invariant features for texture segmentation using wavelrt frames [J].
Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India .
Int. J. Wavelets Multiresolution Inf. Process., 2008, 3 (391-417) :391-417
[2]  
[Anonymous], 1994, Scale-Space Theory in Computer Vision
[3]  
Azzalini A., 1986, STATISTICA, V46, P199
[4]  
Bhoyar K., 2010, INT J IMAGE PROCESS, V3, P265
[5]  
Buhmann JM, 2000, COMP IMAG VIS, V17, P195
[6]  
Chan T., 2007, LECT NOTES COMPUTER, V4485
[7]  
Delon J, 2007, INVERSE PROBL IMAG, V1, P265
[8]   A nonparametric approach for histogram segmentation [J].
Delon, Julie ;
Desolneux, Agnes ;
Lisani, Jose-Luis ;
Belen Petro, Ana .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :253-261
[9]  
Desolneux A, 2003, ANN STAT, V31, P1822
[10]  
Desolneux A., 2008, Interdisciplinary Applied Mathematics, V34