Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks

被引:63
作者
Schneider, Dirk [1 ]
Liaqat, Faroha [2 ]
El Boudouti, El Houssaine [3 ]
El Hassouani, Youssef [4 ]
Djafari-Rouhani, Bahram [5 ]
Tremel, Wolfgang [2 ]
Butt, Hans-Juergen [1 ]
Fytas, George [1 ,6 ,7 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany
[3] Univ Mohamed I, Fac Sci, Dept Phys, LDOM, Oujda 60000, Morocco
[4] Univ Moulay Ismail, Fac Sci & Tech, Dept Phys, Boutalamine 52000, Errachidia, Morocco
[5] Univ Lille 1, CNRS, UMR 8520, UFR Phys,IEMN, F-59655 Villeneuve Dascq, France
[6] Univ Crete, Dept Mat Sci, Iraklion 71110, Greece
[7] FORTH, Iraklion 71110, Greece
关键词
Phononics; band gap; superlattices; hypersound propagation; Brillouin spectroscopy; FOLDED ACOUSTIC PHONONS; ELASTIC-WAVES; SCATTERING;
D O I
10.1021/nl300982d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly-(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures.
引用
收藏
页码:3101 / 3108
页数:8
相关论文
共 38 条
[1]   Hypersonic acoustic mirrors and microcavities in porous silicon [J].
Aliev, G. N. ;
Goller, B. ;
Kovalev, D. ;
Snow, P. A. .
APPLIED PHYSICS LETTERS, 2010, 96 (12)
[2]   Optical bandpass switching by modulating a microcavity using ultrafast acoustics [J].
Berstermann, T. ;
Brueggemann, C. ;
Bombeck, M. ;
Akimov, A. V. ;
Yakovlev, D. R. ;
Kruse, C. ;
Hommel, D. ;
Bayer, M. .
PHYSICAL REVIEW B, 2010, 81 (08)
[3]   Elastic properties and glass transition of supported polymer thin films [J].
Cheng, W. ;
Sainidou, R. ;
Burgardt, P. ;
Stefanou, N. ;
Kiyanova, A. ;
Efremov, M. ;
Fytas, G. ;
Nealey, P. F. .
MACROMOLECULES, 2007, 40 (20) :7283-7290
[4]   Observation and tuning of hypersonic bandgaps in colloidal crystals [J].
Cheng, Wei ;
Wang, Jianjun ;
Jonas, Ulrich ;
Fytas, George ;
Stefanou, Nikolaos .
NATURE MATERIALS, 2006, 5 (10) :830-836
[5]   OBSERVATION OF FOLDED ACOUSTIC PHONONS IN A SEMICONDUCTOR SUPER-LATTICE [J].
COLVARD, C ;
MERLIN, R ;
KLEIN, MV ;
GOSSARD, AC .
PHYSICAL REVIEW LETTERS, 1980, 45 (04) :298-301
[6]   Earthquake anniversary - Can buildings be made earthquake-safe? [J].
Comerio, MC .
SCIENCE, 2006, 312 (5771) :204-206
[7]   SAGITTAL ELASTIC-WAVES IN INFINITE AND SEMI-INFINITE SUPER-LATTICES [J].
DJAFARIROUHANI, B ;
DOBRZYNSKI, L ;
DUPARC, OH ;
CAMLEY, RE ;
MARADUDIN, AA .
PHYSICAL REVIEW B, 1983, 28 (04) :1711-1720
[8]   Acoustic waves in solid and fluid layered materials [J].
El Boudouti, E. H. ;
Djafari-Rouhani, B. ;
Akjouj, A. ;
Dobrzynski, L. .
SURFACE SCIENCE REPORTS, 2009, 64 (11) :471-594
[9]   A dielectric omnidirectional reflector [J].
Fink, Y ;
Winn, JN ;
Fan, SH ;
Chen, CP ;
Michel, J ;
Joannopoulos, JD ;
Thomas, EL .
SCIENCE, 1998, 282 (5394) :1679-1682
[10]   Acoustic Metamaterials [J].
Fok, Lee ;
Ambati, Muralidhar ;
Zhang, Xiang .
MRS BULLETIN, 2008, 33 (10) :931-934