PC-SNet for automated detection of prostate cancer in multiparametric-magnetic resonance imaging

被引:2
|
作者
Juneja, Mamta [1 ]
Saini, Sumindar Kaur [1 ]
Acharjee, Rajarshi [1 ]
Kaul, Sambhav [1 ]
Thakur, Niharika [1 ]
Jindal, Prashant [1 ]
机构
[1] Panjab Univ, Univ Inst Engn & Technol, Chandigarh, India
关键词
convolution neural network; magnetic resonance imaging; prostate cancer; segmentation; SEGMENTATION; GLAND;
D O I
10.1002/ima.22744
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Prostate cancer (PCa) is responsible for the maximum deaths of men across the world after lung cancer; hence, it should be diagnosed in the initial stages. Magnetic resonance imaging (MRI) commonly diagnoses PCa due to better visibility of desired organ and cancerous region over other modalities. Therefore, development of MRI-based computer-aided diagnosis (CAD) systems for PCa has become a recent area of research. Conventional methodologies used by researchers and radiologists were time consuming and prone to subjective errors due to manual interpretation. Thus, the CAD system helps in the early detection of PCa by reducing the computational complexity and increasing the detection accuracy with less chances of subjective errors. This article proposes a deep learning-based methodology named prostate cancer segmentation network (PC-SNet) for the segmentation of the region of interest (ROI) from the MRI sub-modalities T2-weighted (T2W) and dynamic contrast enhanced (DCE). Further, the performance is analyzed using parameters such as accuracy, Mathews correlation coefficient (MCC), dice similarity coefficient (DSC), Jaccard Index (JI) or intersection over union (IOU), F-score, and Hausdorff distance (HD). Finally, the performance of PC-SNet is found to outperform fully convolutional network (FCN), semantic pixel wise segmentation (SegNet), residual network (ResNet), UNet, and ENet architectures.
引用
收藏
页码:1861 / 1879
页数:19
相关论文
共 50 条
  • [1] Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer
    Durmus, T.
    Baur, A.
    Hamm, B.
    AKTUELLE UROLOGIE, 2014, 45 (02) : 119 - 126
  • [2] Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer
    Durmus, T.
    Baur, A.
    Hamm, B.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2014, 186 (03): : 238 - 246
  • [3] MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING IN PROSTATE CANCER DETECTION
    Garcia-Cruz, Eduardo
    Ramon-Barcelo, Catalina
    Carrion-Puig, Ramon
    Alcaraz, Antonio
    ARCHIVOS ESPANOLES DE UROLOGIA, 2019, 72 (04): : 374 - 380
  • [4] Multiparametric Magnetic Resonance Imaging of Prostate Cancer
    Hung, Siu-Wan
    Lin, Yen-Ting
    Liu, Ming-Cheng
    UROLOGICAL SCIENCE, 2018, 29 (06) : 266 - 276
  • [5] DETECTION OF INDIVIDUAL PROSTATE CANCER FOCI BY MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING
    Johnson, David
    Raman, Steven
    Mirak, Sohrab
    Kwan, Lorna
    Bajgiran, Amirhossein
    Faeina, Izak
    Pooli, Aydin
    Salmasi, Amirali
    Sisk, Anthony
    Felker, Ely
    Lu, David
    Reiter, Robert
    JOURNAL OF UROLOGY, 2019, 201 (04): : E423 - E424
  • [6] Evaluation of Multiparametric Magnetic Resonance Imaging in Detection and Prediction of Prostate Cancer
    Wang, Rui
    Wang, He
    Zhao, Chenglin
    Hu, Juan
    Jiang, Yuanyuan
    Tong, Yanjun
    Liu, Ting
    Huang, Rong
    Wang, Xiaoying
    PLOS ONE, 2015, 10 (06):
  • [7] COST EFFECTIVENESS OF MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING FOR DETECTION OF PROSTATE CANCER
    Haddad, Ahmed Q.
    Costa, Daniel
    Pedrosa, Ivan
    Rofsky, Neil
    Roehrborn, Claus
    Lotan, Yair
    JOURNAL OF UROLOGY, 2015, 193 (04): : E180 - E180
  • [8] Role of multiparametric magnetic resonance imaging in early detection of prostate cancer
    De Visschere P.J.L.
    Briganti A.
    Fütterer J.J.
    Ghadjar P.
    Isbarn H.
    Massard C.
    Ost P.
    Sooriakumaran P.
    Surcel C.I.
    Valerio M.
    van den Bergh R.C.N.
    Ploussard G.
    Giannarini G.
    Villeirs G.M.
    Insights into Imaging, 2016, 7 (2) : 205 - 214
  • [9] A Novel and Fully Automated Registration Method for Prostate Cancer Detection Using Multiparametric Magnetic Resonance Imaging
    Giannini, Valentina
    Vignati, Anna
    De Luca, Massimo
    Mazzetti, Simone
    Russo, Filippo
    Armando, Enrico
    Stasi, Michele
    Bollito, Enrico
    Porpiglia, Francesco
    Regge, D.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (06) : 1171 - 1182
  • [10] Precision of multiparametric Prostate Magnetic Resonance Imaging for the Detection of clinically significant Prostate Cancer
    Krafft, U.
    Borkowetz, A.
    UROLOGE, 2020, 59 (01): : 72 - 77