Unifying variational methods for simulating quantum many-body systems

被引:40
|
作者
Dawson, C. M. [1 ]
Eisert, J. [1 ,2 ]
Osborne, T. J. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
[2] Univ Potsdam, Dept Phys, D-14469 Potsdam, Germany
[3] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
D O I
10.1103/PhysRevLett.100.130501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a unified formulation of variational methods for simulating ground state properties of quantum many-body systems. The key feature is a novel variational method over quantum circuits via infinitesimal unitary transformations, inspired by flow equation methods. Variational classes are represented as efficiently contractible unitary networks, including the matrix-product states of density matrix renormalization, multiscale entanglement renormalization (MERA) states, weighted graph states, and quantum cellular automata. In particular, this provides a tool for varying over classes of states, such as MERA, for which so far no efficient way of variation has been known. The scheme is flexible when it comes to hybridizing methods or formulating new ones. We demonstrate the functioning by numerical implementations of MERA, matrix-product states, and a new variational set on benchmarks.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Simulating quantum dissipation in many-body systems
    Capriotti, L
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    EUROPHYSICS LETTERS, 2002, 58 (02): : 155 - 161
  • [2] Simulating Many-Body Systems with a Projective Quantum Eigensolver
    Stair, Nicholas H.
    Evangelista, Francesco A.
    PRX QUANTUM, 2021, 2 (03):
  • [3] Quantum Flow Algorithms for Simulating Many-Body Systems on Quantum Computers
    Kowalski, Karol
    Bauman, Nicholas P.
    PHYSICAL REVIEW LETTERS, 2023, =131 (20)
  • [4] Neural-network variational quantum algorithm for simulating many-body dynamics
    Lee, Chee Kong
    Patil, Pranay
    Zhang, Shengyu
    Hsieh, Chang Yu
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [5] VARIATIONAL METHODS FOR MANY-BODY PROBLEMS
    ROSENBERG, L
    TOLCHIN, S
    PHYSICAL REVIEW A, 1973, 8 (04) : 1702 - 1709
  • [6] Geometric methods for nonlinear many-body quantum systems
    Lewin, Mathieu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) : 3535 - 3595
  • [7] Simulation methods for open quantum many-body systems
    Weimer, Hendrik
    Kshetrimayum, Augustine
    Orus, Roman
    REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
  • [8] Simulating quantum field theory in curved spacetime with quantum many-body systems
    Yang, Run-Qiu
    Liu, Hui
    Zhu, Shining
    Luo, Le
    Cai, Rong-Gen
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [9] Variational benchmarks for quantum many-body problems
    Wu, Dian
    Rossi, Riccardo
    Vicentini, Filippo
    Astrakhantsev, Nikita
    Becca, Federico
    Cao, Xiaodong
    Carrasquilla, Juan
    Ferrari, Francesco
    Georges, Antoine
    Hibat-Allah, Mohamed
    Imada, Masatoshi
    Lauchli, Andreas M.
    Mazzola, Guglielmo
    Mezzacapo, Antonio
    Millis, Andrew
    Moreno, Javier Robledo
    Neupert, Titus
    Nomura, Yusuke
    Nys, Jannes
    Parcollet, Olivier
    Pohle, Rico
    Romero, Imelda
    Schmid, Michael
    Silvester, J. Maxwell
    Sorella, Sandro
    Tocchio, Luca F.
    Wang, Lei
    White, Steven R.
    Wietek, Alexander
    Yang, Qi
    Yang, Yiqi
    Zhang, Shiwei
    Carleo, Giuseppe
    SCIENCE, 2024, 386 (6719) : 296 - 301
  • [10] Variational Embedding for Quantum Many-Body Problems
    Lin, Lin
    Lindsey, Michael
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (09) : 2033 - 2068