Multiple canard cycles in generalized Lienard equations

被引:63
作者
Dumortier, F
Roussarie, R
机构
[1] Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium
[2] Univ Bourgogne, CNRS UMR 5584, Lab Topol, UFR Sci Techn, F-21011 Dijon, France
关键词
D O I
10.1006/jdeq.2000.3947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper treats multiple limit cycle bifurcations in singular perturbation problems of planar vector fields. The results deal with any number of parameters. Proofs are based on the techniques introduced in "Canard Cycles and Center Manifolds" (F. Dumortier and R. Roussarie, 1996, Mem. Amer. Math. Soc. 121). The presentation is limited to generalized Lienard equations epsilonx double over dot + alpha (x, c) + beta (x, c)x over dot = 0. (C) 2001 Academic Press.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 9 条
[1]  
[Anonymous], TCHEBYSHEV SYSTEM AP
[2]   Partially hyperbolic fixed points with constraints [J].
Bonckaert, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) :997-1011
[3]  
CALLOT JL, 1981, THESIS IRMA STRASBOU
[4]  
DIENER F, 1979, THESIS IRMA STRASBOU
[5]  
DIENER M, 1980, CR ACAD SCI A MATH, V290, P541
[6]  
DIENER M, 1981, THESIS IRMA STRASBOU
[7]  
Dumortier F., 1996, MEM AM MATH SOC, V121
[8]  
MARDESIC P, CHEBYCHEV SYSTEMS VE
[9]  
ROUSSAIRE R, 1998, PROGR MATH, V164