Quantum computing for neutrino-nucleus scattering

被引:74
作者
Roggero, Alessandro [1 ]
Li, Andy C. Y. [2 ]
Carlson, Joseph [3 ]
Gupta, Rajan [3 ]
Perdue, Gabriel N. [2 ]
机构
[1] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[2] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[3] Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA
关键词
ENTANGLEMENT; ALGORITHMS; SIMULATION; SYSTEM; STATE;
D O I
10.1103/PhysRevD.101.074038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Neutrino-nucleus cross section uncertainties are expected to be a dominant systematic in future accelerator neutrino experiments. The cross sections are determined by the linear response of the nucleus to the weak interactions of the neutrino, and arc dominated by energy and distance scales of the order of the separation between nucleons in the nucleus. These response functions are potentially an important early physics application of quantum computers. Here we present an analysis of the resources required and their expected scaling for scattering cross section calculations. The current estimates of Trotter steps needed to achieve an energy resolution of 10 MeV and the number of CNOT gates for analyzing Ar-40 highlights the need for significant improvements in algorithms. We also examine simple small-scale neutrino-nucleus models on modern quantum hardware. In this paper, we use variational methods to obtain the ground state of a three nucleon system (the triton) and then implement the relevant time evolution. To tame the errors in present-day NISQ devices, we explore the use of different error-mitigation techniques to increase the fidelity of the calculations.
引用
收藏
页数:22
相关论文
共 65 条
[1]   NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering [J].
Alvarez-Ruso, L. ;
Athar, M. Sajjad ;
Barbaro, M. B. ;
Cherdack, D. ;
Christy, M. E. ;
Coloma, P. ;
Donnelly, T. W. ;
Dytman, S. ;
de Gouvea, A. ;
Hill, R. J. j ;
Huber, P. ;
Jachowicz, N. ;
Katori, T. ;
Kronfeld, A. S. ;
Mahn, K. ;
Martini, M. ;
Morfin, J. G. ;
Nieves, J. ;
Perdue, G. N. ;
Petti, R. ;
Richards, D. G. ;
Sanchez, F. ;
Sato, T. ;
Sobczyk, J. T. ;
Zeller, G. P. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2018, 100 :1-68
[2]   The GENIE neutrino Monte Carlo generator [J].
Andreopoulos, C. ;
Bell, A. ;
Bhattacharya, D. ;
Cavanna, F. ;
Dobson, J. ;
Dytman, S. ;
Gallagher, H. ;
Guzowski, P. ;
Hatcher, R. ;
Kehayias, P. ;
Meregaglia, A. ;
Naples, D. ;
Pearce, G. ;
Rubbia, A. ;
Whalley, M. ;
Yang, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 614 (01) :87-104
[3]  
[Anonymous], ARXIV190210673
[4]  
[Anonymous], 2019, 20QUBIT BACKED IBM Q
[5]  
[Anonymous], ARXIV190612122
[6]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[7]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[8]   The three-boson system with short-range interactions [J].
Bedaque, PF ;
Hammer, HW ;
van Kolck, U .
NUCLEAR PHYSICS A, 1999, 646 (04) :444-466
[9]   Renormalization of the three-body system with short-range interactions [J].
Bedaque, PF ;
Hammer, HW ;
van Kolck, U .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :463-467
[10]   Effective field theory for few-nucleon systems [J].
Bedaque, PF ;
van Kolck, U .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2002, 52 :339-396