Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project

被引:382
作者
Merino, Diana M. [1 ]
Mcshane, Lisa M. [2 ]
Fabrizio, David [3 ]
Funari, Vincent [4 ]
Chen, Shu-Jen [5 ]
White, James R. [6 ]
Wenz, Paul [7 ]
Baden, Jonathan [8 ]
Barrett, J. Carl [9 ]
Chaudhary, Ruchi [10 ]
Chen, Li [11 ]
Chen, Wangjuh [12 ]
Cheng, Jen-Hao [5 ]
Cyanam, Dinesh [10 ]
Dickey, Jennifer S. [13 ]
Gupta, Vikas [14 ]
Hellmann, Matthew [15 ]
Helman, Elena [16 ]
Li, Yali [3 ]
Maas, Joerg [17 ]
Papin, Arnaud [18 ]
Patidar, Rajesh [11 ]
Quinn, Katie J. [16 ]
Rizvi, Naiyer [19 ]
Tae, Hongseok [12 ]
Ward, Christine [8 ]
Xie, Mingchao [20 ]
Zehir, Ahmet [15 ]
Zhao, Chen [7 ]
Dietel, Manfred [17 ]
Stenzinger, Albrecht [21 ]
Stewart, Mark [1 ]
Allen, Jeff [1 ]
机构
[1] Friends Canc Res, Washington, DC 20036 USA
[2] NCI, Bethesda, MD 20892 USA
[3] Fdn Med Inc, Cambridge, MA USA
[4] NeoGen Labs, Aliso Viejo, CA USA
[5] ACT Genom, Taipei, Taiwan
[6] Resphera Biosci, Baltimore, MD USA
[7] Illumina Inc, Clin Genom, San Diego, CA USA
[8] Bristol Myers Squibb Co, Princeton, NJ USA
[9] AstraZeneca Pharmaceut LP, Translat Med Oncol Res & Early Dev, Boston, MA USA
[10] Thermo Fisher Sci, Clin Sequencing Div, Ann Arbor, MI USA
[11] Frederick Natl Lab Canc Res, Mol Characterizat Lab, Frederick, MD USA
[12] Caris Life Sci Inc, Phoenix, AZ USA
[13] Personal Genome Diagnost, Baltimore, MD USA
[14] QIAGEN Inc, Aarhus, Denmark
[15] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10021 USA
[16] Guardant Hlth Inc, Bioinformat, Redwood City, CA USA
[17] Qual Pathol QuIP, Berlin, Germany
[18] QIAGEN Inc, Waltham, MA USA
[19] Columbia Univ, Dept Med, Div Hematol Oncol, New York, NY USA
[20] AstraZeneca Pharmaceut LP, Waltham, MA USA
[21] Univ Hosp Heidelberg, Inst Pathol, Heidelberg, Baden Wurttembe, Germany
关键词
TMB; tumor mutational burden; biomarker; harmonization; immunotherapies; immune checkpoint inhibitors; IMMUNE CHECKPOINT BLOCKADE; CTLA-4; BLOCKADE; PD-1; IMMUNOTHERAPY; VALIDATION; LANDSCAPE; THERAPY;
D O I
10.1136/jitc-2019-000147
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, demonstrates predictive biomarker potential for the identification of patients with cancer most likely to respond to immune checkpoint inhibitors. TMB is optimally calculated by whole exome sequencing (WES), but next-generation sequencing targeted panels provide TMB estimates in a time-effective and cost-effective manner. However, differences in panel size and gene coverage, in addition to the underlying bioinformatics pipelines, are known drivers of variability in TMB estimates across laboratories. By directly comparing panel-based TMB estimates from participating laboratories, this study aims to characterize the theoretical variability of panel-based TMB estimates, and provides guidelines on TMB reporting, analytic validation requirements and reference standard alignment in order to maintain consistency of TMB estimation across platforms. Methods Eleven laboratories used WES data from The Cancer Genome Atlas Multi-Center Mutation calling in Multiple Cancers (MC3) samples and calculated TMB from the subset of the exome restricted to the genes covered by their targeted panel using their own bioinformatics pipeline (panel TMB). A reference TMB value was calculated from the entire exome using a uniform bioinformatics pipeline all members agreed on (WES TMB). Linear regression analyses were performed to investigate the relationship between WES and panel TMB for all 32 cancer types combined and separately. Variability in panel TMB values at various WES TMB values was also quantified using 95% prediction limits. Results Study results demonstrated that variability within and between panel TMB values increases as the WES TMB values increase. For each panel, prediction limits based on linear regression analyses that modeled panel TMB as a function of WES TMB were calculated and found to approximately capture the intended 95% of observed panel TMB values. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers. Conclusions Increasing uptake of TMB as a predictive biomarker in the clinic creates an urgent need to bring stakeholders together to agree on the harmonization of key aspects of panel-based TMB estimation, such as the standardization of TMB reporting, standardization of analytical validation studies and the alignment of panel-based TMB values with a reference standard. These harmonization efforts should improve consistency and reliability of panel TMB estimates and aid in clinical decision-making.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Immune Checkpoint Blockade: The Hope for Immunotherapy as a Treatment of Lung Cancer? [J].
Brahmer, Julie R. .
SEMINARS IN ONCOLOGY, 2014, 41 (01) :126-132
[2]   Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis [J].
Buchhalter, Ivo ;
Rempel, Eugen ;
Endris, Volker ;
Allgaeuer, Michael ;
Neumann, Olaf ;
Volckmar, Anna-Lena ;
Kirchner, Martina ;
Leichsenring, Jonas ;
Lier, Amelie ;
von Winterfeld, Moritz ;
Penzel, Roland ;
Christopoulos, Petros ;
Thomas, Michael ;
Froehling, Stefan ;
Schirmacher, Peter ;
Budczies, Jan ;
Stenzinger, Albrecht .
INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (04) :848-858
[3]   Comprehensive Analysis of Hypermutation in Human Cancer [J].
Campbell, Brittany B. ;
Light, Nicholas ;
Fabrizio, David ;
Zatzman, Matthew ;
Fuligni, Fabio ;
de Borja, Richard ;
Davidson, Scott ;
Edwards, Melissa ;
Elvin, Julia A. ;
Hodel, Karl P. ;
Zahurancik, Walter J. ;
Suo, Zucai ;
Lipman, Tatiana ;
Wimmer, Katharina ;
Kratz, Christian P. ;
Bowers, Daniel C. ;
Laetsch, Theodore W. ;
Dunn, Gavin P. ;
Johanns, Tanner M. ;
Grimmer, Matthew R. ;
Smirnov, Ivan V. ;
Larouche, Valerie ;
Samuel, David ;
Bronsema, Annika ;
Osborn, Michael ;
Stearns, Duncan ;
Raman, Pichai ;
Cole, Kristina A. ;
Storm, Phillip B. ;
Yalon, Michal ;
Opocher, Enrico ;
Mason, Gary ;
Thomas, Gregory A. ;
Sabel, Magnus ;
George, Ben ;
Ziegler, David S. ;
Lindhorst, Scott ;
Issai, Vanan Magimairajan ;
Constantini, Shlomi ;
Toledano, Helen ;
Elhasid, Ronit ;
Farah, Roula ;
Dvir, Rina ;
Dirks, Peter ;
Huang, Annie ;
Galati, Melissa A. ;
Chung, Jiil ;
Ramaswamy, Vijay ;
Irwin, Meredith S. ;
Aronson, Melyssa .
CELL, 2017, 171 (05) :1042-+
[4]   First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer [J].
Carbone, D. P. ;
Reck, M. ;
Paz-Ares, L. ;
Creelan, B. ;
Horn, L. ;
Steins, M. ;
Felip, E. ;
van den Heuvel, M. M. ;
Ciuleanu, T. -E. ;
Badin, F. ;
Ready, N. ;
Hiltermann, T. J. N. ;
Nair, S. ;
Juergens, R. ;
Peters, S. ;
Minenza, E. ;
Wrangle, J. M. ;
Rodriguez-Abreu, D. ;
Borghaei, H. ;
Blumenschein, G. R. ;
Villaruz, L. C. ;
Havel, L. ;
Krejci, J. ;
Corral Jaime, J. ;
Chang, H. ;
Geese, W. J. ;
Bhagavatheeswaran, P. ;
Chen, A. C. ;
Socinski, M. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (25) :2415-2426
[5]   Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden [J].
Chalmers, Zachary R. ;
Connelly, Caitlin F. ;
Fabrizio, David ;
Gay, Laurie ;
Ali, Siraj M. ;
Ennis, Riley ;
Schrock, Alexa ;
Campbell, Brittany ;
Shlien, Adam ;
Chmielecki, Juliann ;
Huang, Franklin ;
He, Yuting ;
Sun, James ;
Tabori, Uri ;
Kennedy, Mark ;
Lieber, Daniel S. ;
Roels, Steven ;
White, Jared ;
Otto, Geoffrey A. ;
Ross, Jeffrey S. ;
Garraway, Levi ;
Miller, Vincent A. ;
Stephens, Phillip J. ;
Frampton, Garrett M. .
GENOME MEDICINE, 2017, 9
[6]   Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic [J].
Chan, T. A. ;
Yarchoan, M. ;
Jaffee, E. ;
Swanton, C. ;
Quezada, S. A. ;
Stenzinger, A. ;
Peters, S. .
ANNALS OF ONCOLOGY, 2019, 30 (01) :44-56
[7]   A scalable solution for tumor mutational burden from formalinfixed, paraffin-embedded samples using the Oncomine Tumor Mutation Load Assay [J].
Chaudhary, Ruchi ;
Quagliata, Luca ;
Martin, Jermann Philip ;
Alborelli, Ilaria ;
Cyanam, Dinesh ;
Mittal, Vinay ;
Tom, Warren ;
Au-Young, Janice ;
Sadis, Seth ;
Hyland, Fiona .
TRANSLATIONAL LUNG CANCER RESEARCH, 2018, 7 (06) :616-630
[8]   Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology [J].
Cheng, Donavan T. ;
Mitchell, Talia N. ;
Zehir, Ahmet ;
Shah, Ronak H. ;
Benayed, Ryma ;
Syed, Aijazuddin ;
Chandramohan, Raghu ;
Liu, Zhen Yu ;
Won, Helen H. ;
Scott, Sasinya N. ;
Brannon, A. Rose ;
O'Reilly, Catherine ;
Sadowska, Justyna ;
Casanova, Jacklyn ;
Yannes, Angela ;
Hechtman, Jaclyn F. ;
Yao, Jinjuan ;
Song, Wei ;
Ross, Dara S. ;
Oultache, Alifya ;
Dogan, Snjezana ;
Borsu, Laetitia ;
Hameed, Meera ;
Nafa, Khedoudja ;
Arcila, Maria E. ;
Ladanyi, Marc ;
Berger, Michael F. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (03) :251-264
[9]   Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J].
Cristescu, Razvan ;
Mogg, Robin ;
Ayers, Mark ;
Albright, Andrew ;
Murphy, Erin ;
Yearley, Jennifer ;
Sher, Xinwei ;
Liu, Xiao Qiao ;
Lu, Hongchao ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Lunceford, Jared ;
Joe, Andrew ;
Cheng, Jonathan ;
Webber, Andrea L. ;
Ibrahim, Nageatte ;
Plimack, Elizabeth R. ;
Ott, Patrick A. ;
Seiwert, Tanguy ;
Ribas, Antoni ;
McClanahan, Terrill K. ;
Tomassini, Joanne E. ;
Loboda, Andrey ;
Kaufman, David .
SCIENCE, 2018, 362 (6411) :197-+
[10]   Neo approaches to cancer vaccines [J].
Delamarre, Lelia ;
Mellman, Ira ;
Yadav, Mahesh .
SCIENCE, 2015, 348 (6236) :760-761