A primer on deep learning in genomics

被引:480
作者
Zou, James [1 ,2 ,3 ]
Huss, Mikael [4 ,5 ]
Abid, Abubakar [3 ]
Mohammadi, Pejman [6 ,7 ]
Torkamani, Ali [6 ,7 ]
Telenti, Amalio [6 ,7 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Palo Alto, CA 94304 USA
[2] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[3] Stanford Univ, Dept Elect Engn, Palo Alto, CA 94304 USA
[4] Peltarion, Stockholm, Sweden
[5] Karolinska Inst, Dept Learning Informat Management & Eth, Stockholm, Sweden
[6] Scripps Res Translat Inst, La Jolla, CA 92037 USA
[7] Scripps Res Inst, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
基金
美国国家科学基金会;
关键词
DNA;
D O I
10.1038/s41588-018-0295-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Deep learning methods are a class of machine learning techniques capable of identifying highly complex patterns in large datasets. Here, we provide a perspective and primer on deep learning applications for genome analysis. We discuss successful applications in the fields of regulatory genomics, variant calling and pathogenicity scores. We include general guidance for how to effectively use deep learning methods as well as a practical guide to tools and resources. This primer is accompanied by an interactive online tutorial.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 65 条
  • [11] Gene expression inference with deep learning
    Chen, Yifei
    Li, Yi
    Narayan, Rajiv
    Subramanian, Aravind
    Xie, Xiaohui
    [J]. BIOINFORMATICS, 2016, 32 (12) : 1832 - 1839
  • [12] Opportunities and obstacles for deep learning in biology and medicine
    Ching, Travers
    Himmelstein, Daniel S.
    Beaulieu-Jones, Brett K.
    Kalinin, Alexandr A.
    Do, Brian T.
    Way, Gregory P.
    Ferrero, Enrico
    Agapow, Paul-Michael
    Zietz, Michael
    Hoffman, Michael M.
    Xie, Wei
    Rosen, Gail L.
    Lengerich, Benjamin J.
    Israeli, Johnny
    Lanchantin, Jack
    Woloszynek, Stephen
    Carpenter, Anne E.
    Shrikumar, Avanti
    Xu, Jinbo
    Cofer, Evan M.
    Lavender, Christopher A.
    Turaga, Srinivas C.
    Alexandari, Amr M.
    Lu, Zhiyong
    Harris, David J.
    DeCaprio, Dave
    Qi, Yanjun
    Kundaje, Anshul
    Peng, Yifan
    Wiley, Laura K.
    Segler, Marwin H. S.
    Boca, Simina M.
    Swamidass, S. Joshua
    Huang, Austin
    Gitter, Anthony
    Greene, Casey S.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
  • [13] Cui H., 2017, BOOSTING GENE EXPRES
  • [14] Eser U., 2016, FIDDLE INTEGRATIVE D
  • [15] Ghorbani A., 2017, Interpretation of neural networks is fragile
  • [16] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [17] Hastie T., 2009, Springer Series in Statistics, DOI DOI 10.1007/B94608
  • [18] A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential
    Hill, Steven T.
    Kuintzle, Rachael
    Teegarden, Amy
    Merrill, Erich, III
    Danaee, Padideh
    Hendrix, David A.
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (16) : 8105 - 8113
  • [19] Reducing the dimensionality of data with neural networks
    Hinton, G. E.
    Salakhutdinov, R. R.
    [J]. SCIENCE, 2006, 313 (5786) : 504 - 507
  • [20] Integrative deep models for alternative splicing
    Jha, Anupama
    Gazzara, Matthew R.
    Barash, Yoseph
    [J]. BIOINFORMATICS, 2017, 33 (14) : I274 - I282