A primer on deep learning in genomics

被引:480
作者
Zou, James [1 ,2 ,3 ]
Huss, Mikael [4 ,5 ]
Abid, Abubakar [3 ]
Mohammadi, Pejman [6 ,7 ]
Torkamani, Ali [6 ,7 ]
Telenti, Amalio [6 ,7 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Palo Alto, CA 94304 USA
[2] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[3] Stanford Univ, Dept Elect Engn, Palo Alto, CA 94304 USA
[4] Peltarion, Stockholm, Sweden
[5] Karolinska Inst, Dept Learning Informat Management & Eth, Stockholm, Sweden
[6] Scripps Res Translat Inst, La Jolla, CA 92037 USA
[7] Scripps Res Inst, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
基金
美国国家科学基金会;
关键词
DNA;
D O I
10.1038/s41588-018-0295-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Deep learning methods are a class of machine learning techniques capable of identifying highly complex patterns in large datasets. Here, we provide a perspective and primer on deep learning applications for genome analysis. We discuss successful applications in the fields of regulatory genomics, variant calling and pathogenicity scores. We include general guidance for how to effectively use deep learning methods as well as a practical guide to tools and resources. This primer is accompanied by an interactive online tutorial.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 65 条
  • [1] Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    Alipanahi, Babak
    Delong, Andrew
    Weirauch, Matthew T.
    Frey, Brendan J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (08) : 831 - +
  • [2] DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    Angermueller, Christof
    Lee, Heather J.
    Reik, Wolf
    Stegle, Oliver
    [J]. GENOME BIOLOGY, 2017, 18
  • [3] Deep learning for computational biology
    Angermueller, Christof
    Parnamaa, Tanel
    Parts, Leopold
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
  • [4] [Anonymous], DEEPGS PREDICTING PH
  • [5] [Anonymous], 2011, J. Mach. Learn. Technol
  • [6] [Anonymous], 2018, Feedback GAN (FBGAN) for DNA: a novel feedback-loop architecture for optimizing protein functions
  • [7] Avsec Z., 2018, KIPOI ACCELERATING C
  • [8] DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads
    Boza, Vladimir
    Brejova, Brona
    Vinar, Tomas
    [J]. PLOS ONE, 2017, 12 (06):
  • [9] Next-Generation Machine Learning for Biological Networks
    Camacho, Diogo M.
    Collins, Katherine M.
    Powers, Rani K.
    Costello, James C.
    Collins, James J.
    [J]. CELL, 2018, 173 (07) : 1581 - 1592
  • [10] High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice
    Chen, Likai
    Gao, Weiwei
    Chen, Siping
    Wang, Liping
    Zou, Jiyong
    Liu, Yongzhu
    Wang, Hui
    Chen, Zhiqiang
    Guo, Tao
    [J]. RICE, 2016, 9 : 1 - 17