Point Encoder GAN: A deep learning model for 3D point cloud inpainting

被引:47
|
作者
Yu, Yikuan [1 ,2 ]
Huang, Zitian [1 ,2 ]
Li, Fei [3 ,4 ]
Zhang, Haodong [1 ,2 ]
Le, Xinyi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 20040, Peoples R China
[2] Shanghai Key Lab Adv Mfg Environm, Shanghai 200240, Peoples R China
[3] Beijing Inst Elect Syst Engn, State Key Lab Intelligent Mfg Syst Technol, Beijing 100854, Peoples R China
[4] Beijing Simulat Ctr, Beijing Complex Prod Adv Mfg Res Ctr, Beijing 100854, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Point cloud; Neural network; Inpainting; Encoder; Generative adversarial nets (GANs);
D O I
10.1016/j.neucom.2019.12.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Point Encoder GAN for 3D point cloud inpainting. Different from other 3D object inpainting networks, our network can process point cloud data directly without any labeling and assumption. We use a max-pooling layer to solve the unordered of point cloud during the learning procedure. We add two T-Nets (from PointNet) to the encoderdecoder pipeline, which can yield better feature representation of the input point cloud and a more suitable rotation angle of the output point cloud. We then propose a hybrid reconstruction loss function to measure the difference between the two sets of unordered data. Using small sample models on ModelNet40 only, the proposed Point Encoder GAN yields end-to-end inpainting results surprisingly. Experiment results have shown a high success rate. Several technical measures are used to identify the good qualities of our generated models. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 50 条
  • [1] Point Encoder GAN: A deep learning model for 3D point cloud inpainting
    Yu, Yikuan
    Huang, Zitian
    Li, Fei
    Zhang, Haodong
    Le, Xinyi
    Neurocomputing, 2020, 384 : 192 - 199
  • [2] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [3] Point Cloud Annotation Methods for 3D Deep Learning
    O'Mahony, Niall
    Campbell, Sean
    Carvalho, Anderson
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    2019 13TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2019,
  • [4] 3D Point Cloud Geometry Compression on Deep Learning
    Huang, Tianxin
    Liu, Yong
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 890 - 898
  • [5] LiDAR Inpainting of UAV Based 3D Point Cloud Using Supervised Learning
    Talha, Muhammad
    Hussein, Aya
    Hossny, Mohammed
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 203 - 214
  • [6] Point AE-DCGAN: A deep learning model for 3D point cloud lossy geometry compression
    Xu, Jiacheng
    Fang, Zhijun
    Gao, Yongbin
    Ma, Siwei
    Jin, Yaochu
    Zhou, Heng
    Wang, Anjie
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 379 - 379
  • [7] MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences
    Liu, Xingyu
    Yan, Mengyuan
    Bohg, Jeannette
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9245 - 9254
  • [8] Characterization and Analysis of Deep Learning for 3D Point Cloud Analytics
    Hyun, Bongjoon
    Lee, Jiwon
    Rhu, Minsoo
    IEEE COMPUTER ARCHITECTURE LETTERS, 2021, 20 (02) : 106 - 109
  • [9] A review of deep learning based on 3D point cloud segmentation
    Lu J.
    Jia X.-R.
    Zhou J.
    Liu W.
    Zhang K.-B.
    Pang F.-F.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (03): : 595 - 611
  • [10] Point-BLS: 3D Point Cloud Classification Combining Deep Learning and Broad Learning System
    Chen, Yixuan
    Fu, Mengyin
    Shen, Kai
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2810 - 2815