Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations

被引:54
作者
Buffa, A [1 ]
机构
[1] CNR, MATI, Sede Pavia, I-27100 Pavia, Italy
关键词
finite elements; boundary elements; Maxwell equations;
D O I
10.1137/S003614290342385X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We aim to provide a framework for the analysis of convergence for the Galerkin approximation for a class of noncoercive problems. We provide a sufficient condition on the finite element space for the convergence and optimality of the Galerkin scheme. This theory is then applied to the study of the well-posedness and approximability of two problems in electromagnetism.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 43 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[4]   A note on the de Rham complex and a discrete compactness property [J].
Boffi, D .
APPLIED MATHEMATICS LETTERS, 2001, 14 (01) :33-38
[5]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
[6]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[7]  
Brezzi F., 1991, SPRINGER SER COMPUT, V15
[8]  
Buffa A, 2003, LECT NOTES COMP SCI, V31, P83
[9]  
Buffa A, 2003, LECT NOTES COMP SCI, V28, P23
[10]   Boundary element methods for Maxwell transmission problems in Lipschitz domains [J].
Buffa, A ;
Hiptmair, R ;
von Petersdorff, T ;
Schwab, C .
NUMERISCHE MATHEMATIK, 2003, 95 (03) :459-485