Radial basis functions and corresponding zonal series expansions on the sphere

被引:17
作者
Castell, WZ [1 ]
Filbir, F [1 ]
机构
[1] GSF, Inst Biomath & Biometry, Natl Res Ctr Environm & Hlth, D-85764 Neuherberg, Germany
关键词
radial basis functions; zonal basis functions; positive definite functions; conditionally positive definite functions; bessel functions; Gegenbauer polynomials; kriging;
D O I
10.1016/j.jat.2004.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Since radial positive definite functions on R-d remain positive definite when restricted to the sphere, it is natural to ask for properties of the zonal series expansion of such functions which relate to properties of the Fourier-Bessel transform of the radial function. We show that the decay of the Gegenbauer coefficients is determined by the behavior of the Fourier-Bessel transform at the origin. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 19 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[2]  
[Anonymous], 1998, CONSTR APPROX
[3]   DIFFERENTIABILITY PROPERTIES OF SYMMETRIC AND ISOTROPIC FUNCTIONS [J].
BALL, JM .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :699-728
[4]  
Baxter BJC, 2001, INT S NUM M, V137, P33
[5]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[6]  
Crum M. M., 1956, P LONDON MATH SOC 3, Vs3-6, P548, DOI [10.1112/plms/s3-6.4.548, DOI 10.1112/PLMS/S3-6.4.548]
[8]  
FLENSTEDJENSEN M, 1979, LECT NOTES MATH, V739, P249
[9]  
Gelf I.M, 1964, GEN FUNCTIONS, VIV
[10]   CONDITIONALLY POSITIVE-DEFINITE FUNCTIONS AND LAPLACE-STIELTJES INTEGRALS [J].
GUO, K ;
HU, S ;
SUN, X .
JOURNAL OF APPROXIMATION THEORY, 1993, 74 (03) :249-265