On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities

被引:15
作者
Messaoudi, Salim A. [1 ]
机构
[1] Univ Sharjah, Dept Math, Sharjah, U Arab Emirates
关键词
exponential decay; polynomial decay; strong damping; variable exponent; wave; HYPERBOLIC-EQUATIONS; EXISTENCE; UNIQUENESS; BLOWUP;
D O I
10.1002/mma.6254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the following nonlinear wave equation with variable exponents: u(tt) - div(|vertical bar del u vertical bar(r(.)-2)del u) - Delta u(t) + vertical bar u(t)vertical bar(m(.)-2)u(t) = 0, in Omega x (0, T), where Omega is a bounded domain, T > 0, andm(.) and r(.) are continuous functions. We will establish several decay results depending on the range of the variable exponents m and r.
引用
收藏
页码:5114 / 5126
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 1994, MULTIPLIER METHOD
[2]  
[Anonymous], 2015, ATLANTIS STUDIES DIF
[3]   Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Ferreira, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 :62-77
[4]   WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP [J].
Antontsev, Stanislav .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04) :503-525
[5]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[6]   Exponential decay of solutions of a nonlinearly damped wave equation [J].
Benaissa, A ;
Messaoudi, S .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04) :391-399
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]   Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities [J].
Ghegal, Samah ;
Hamchi, Ilhem ;
Messaoudi, Salim A. .
APPLICABLE ANALYSIS, 2020, 99 (08) :1333-1343
[10]   Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy [J].
Guo, Bin ;
Gao, Wenjie .
COMPTES RENDUS MECANIQUE, 2014, 342 (09) :513-519