At the Crossroads of Salinity and Rhizobium-Legume Symbiosis

被引:9
|
作者
Chakraborty, Sanhita [1 ]
Harris, Jeanne M. [1 ,2 ]
机构
[1] Univ Vermont, Dept Plant Biol, Burlington, VT 05405 USA
[2] Univ Wisconsin Madison, Dept Bacteriol, Madison, WI 53706 USA
关键词
hyperinduction; priming; salinity; symbiosis; MEDICAGO-TRUNCATULA; SALT-STRESS; SINORHIZOBIUM-MELILOTI; NOD FACTOR; TRANSCRIPTION FACTOR; PLANT-GROWTH; AZORHIZOBIUM-CAULINODANS; SODIUM-CHLORIDE; ROOT HAIRS; ENVIRONMENTAL-CONDITIONS;
D O I
10.1094/MPMI-09-21-0231-FI
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.
引用
收藏
页码:540 / 553
页数:14
相关论文
共 50 条
  • [21] Perception of the oligosaccharide signal that initiates the rhizobium-legume symbiosis
    Etzler, ME
    Wu, B
    Kalsi, G
    FASEB JOURNAL, 2005, 19 (05): : A1373 - A1373
  • [22] INTERGENERIC TRANSFER OF GENES INVOLVED IN RHIZOBIUM-LEGUME SYMBIOSIS
    BISHOP, PE
    DAZZO, FB
    APPELBAUM, ER
    MAIER, RJ
    BRILL, WJ
    SCIENCE, 1977, 198 (4320) : 938 - 940
  • [23] Toxicity testing of polycyclic aromatic hydrocarbons with the Rhizobium-legume symbiosis
    Neumann, H
    Bode-Kirchhoff, A
    Wetzel, A
    Werner, D
    CONTAMINATED SOIL '98, VOLS 1 AND 2, 1998, : 1041 - 1042
  • [24] Perception of the glycan signals that initiate the rhizobium-legume symbiosis.
    Etzler, ME
    Wu, B
    Kalsi, G
    Hoye, E
    Harada, BT
    GLYCOBIOLOGY, 2003, 13 (11) : 833 - 833
  • [25] BIOGENESIS OF LEGHEMOGLOBIN - DETERMINANT IN RHIZOBIUM-LEGUME SYMBIOSIS FOR LEGHEMOGLOBIN SPECIFICITY
    CUTTING, JA
    SCHULMAN, HM
    BIOCHIMICA ET BIOPHYSICA ACTA, 1971, 229 (01) : 58 - &
  • [26] SIMULATION OF MARKED ROOT HAIR CURLING IN RHIZOBIUM-LEGUME SYMBIOSIS
    VANBATENBURG, FHD
    KIJNE, JW
    VANIREN, F
    LIBBENGA, KR
    PHYSIOLOGIA PLANTARUM, 1983, 59 (03) : 363 - 368
  • [27] THE EFFECT OF AZOSPIRILLUM BRASILENSE ON RHIZOBIUM-LEGUME SYMBIOSIS AND PRODUCTIVITY OF PLANTS
    ANDREYEVA, IN
    REDKINA, TV
    MANDCHAN, K
    KOZLOVA, GI
    IZMAILOV, SF
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (06): : 1511 - 1514
  • [28] Host plant control on bacteroid differentiation in Rhizobium-legume symbiosis
    Uchiumi, T
    Mergaert, P
    Alunni, B
    Mausset, AE
    Kucho, K
    Abe, M
    Kondorosi, A
    Kondorosi, E
    PLANT AND CELL PHYSIOLOGY, 2006, 47 : S58 - S58
  • [29] BACTERIAL ATTACHMENT AS RELATED TO CELLULAR RECOGNITION IN THE RHIZOBIUM-LEGUME SYMBIOSIS
    DAZZO, FB
    JOURNAL OF SUPRAMOLECULAR STRUCTURE AND CELLULAR BIOCHEMISTRY, 1981, 16 (01): : 29 - 41
  • [30] Molecular insights into bacteroid development during Rhizobium-legume symbiosis
    Haag, Andreas F.
    Arnold, Markus F. F.
    Myka, Kamila K.
    Kerscher, Bernhard
    Dall'Angelo, Sergio
    Zanda, Matteo
    Mergaert, Peter
    Ferguson, Gail P.
    FEMS MICROBIOLOGY REVIEWS, 2013, 37 (03) : 364 - 383