Embedding complete trees into the hypercube

被引:37
作者
Bezrukov, SL [1 ]
机构
[1] Univ Wisconsin, Dept Math & Comp Sci, Superior, WI 54880 USA
关键词
embedding; dilation; complete tree; hypercube;
D O I
10.1016/S0166-218X(00)00256-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider embeddings of the complete t-aly trees of depth k (denotation T-k,T- 1)) as subgraphs into the hypercube of minimum dimension n. This n, denoted by dim(T-k,T- t), is known if max {k, t} less than or equal to 2. First, we study the next open cases t = 3 and k = 3. We improve the known upper bound dim ( T-k,T- 3) less than or equal to 2k + 1 up to limk --> infinity dim(T-k,T- 3)/k less than or equal to 5/3 and show limt --> infinity dim(T-3,T- t)/t = 227/ 120. As a co-result, we present an exact formula for the dimension of arbitrary trees of depth 2, as a function of their vertex degrees. These results and new techniques provide an improvement of the known upper bound for dim(T-k,T- t) for arbitrary k and t. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:101 / 119
页数:19
相关论文
共 11 条
[1]  
BEZRUKOV SL, 1994, COMB PROB COMPUT, V3, P27
[2]  
GRONAU HDO, 1994, COMMUNICATION
[3]  
Harary F., 1969, GRAPH THEORY
[4]  
HAVEL I, 1972, CASOPIS PEST MAT, V97, P201
[5]  
HAVEL I, 1973, CASOPIS PEST MAT, V98, P307
[6]  
HAVEL I, 1982, ROSTOCK MATH KOLLOQ, V21, P39
[7]  
MIRSKY G, 1971, TRANSVERSAL THEORY M, V75
[8]  
Nebesky L., 1974, CASOPIS PEST MAT, V99, P164
[9]  
OLLE F, 1972, THESIS MATH I PRAGUE
[10]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436