On products of cyclic and abelian finite p-groups (p odd)

被引:1
作者
McCann, Brendan [1 ]
机构
[1] Waterford Inst Technol, Dept Comp & Math, Cork Rd, Waterford, Ireland
关键词
Products of groups; factorised groups; finite p-groups;
D O I
10.3792/pjaa.94.77
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime p, it is shown that if G = AB is a finite p-group, for subgroups A and B such that A is cyclic and B is abelian of exponent at most p(k), then Omega(k)(A)B (sic) G, where Omega(k)(A) = < g is an element of A vertical bar g(pk) = 1 >.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 10 条
  • [1] Amberg B., 1992, Oxford Mathematical Monographs
  • [2] Blackburn N., 1958, MATH Z, V68, P422
  • [3] Derived subgroups of products of an Abelian and a cyclic subgroup
    Conder, MDE
    Isaacs, IM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 333 - 348
  • [4] HOWLETT RB, 1985, J LOND MATH SOC, V31, P265
  • [5] Huppert B., 1953, MATH Z, V58, P243
  • [6] Ito N., 1956, P JAPAN ACAD, V32, P736
  • [7] Ito N., 1955, MATH Z, P400, DOI [DOI 10.1007/BF01180647, 10.1007/BF01180647]
  • [8] Ito N., 1956, PUBL MATH-DEBRECEN, V4, P517
  • [9] Ito N., 1956, P JAPAN ACAD, V32, P741
  • [10] On products of cyclic and elementary abelian p-groups
    Mccann, Brendan
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (1-2): : 185 - 216